Thalia Salinas-Giegé, Mitchell Ticoras, Florent Waltz, Nadine Coosemans, Steven Fanara, Johana Chicher, Philippe Hammann, Patrice P Hamel, Claire Remacle
{"title":"NDUFAF3 is Involved in the Assembly of the Q/P Modules of Respiratory Complex I in the Green Microalga Chlamydomonas reinhardtii.","authors":"Thalia Salinas-Giegé, Mitchell Ticoras, Florent Waltz, Nadine Coosemans, Steven Fanara, Johana Chicher, Philippe Hammann, Patrice P Hamel, Claire Remacle","doi":"10.1111/ppl.70406","DOIUrl":null,"url":null,"abstract":"<p><p>The mitochondrial NADH:ubiquinone oxidoreductase, or complex I, is composed of a hydrophobic arm comprising the P module and a hydrophilic arm comprising the N and Q modules. The assembly of complex I is well characterized in humans and is catalyzed by a series of assembly factors that join the Q, P, and N modules sequentially. The complex I of protists and plants, however, contains additional ancestral features, namely a ferredoxin bridge that connects the matrix and the membrane arms and a γ carbonic anhydrase domain, whose mechanisms of assembly are unknown. In this work, a strain where the complex I assembly factor NDUFAF3 has been tagged with a 3×FLAG at the C-terminus is investigated in the green microalga Chlamydomonas reinhardtii. Like its human homolog, NDUFAF3 interacts strongly with the classical subunits of the Q and P modules, but also with the γ carbonic anhydrase domain and C1-FDX, a subunit of the ferredoxin bridge. The predicted structural positioning of NDUFAF3 within the Q module suggests a role in the formation of this bridge. In contrast, subunits of the N module are only loosely associated with NDUFAF3. We further demonstrate that the N module is attached at a later stage of assembly, suggesting that Chlamydomonas complex I assembles in a human-like sequence. This contrasts with what is documented in Angiosperms, where the N and Q modules are attached together before anchoring to the P module. Altogether, these results highlight a conserved and ancestral role of NDUFAF3 in complex I manufacture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70406"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mitochondrial NADH:ubiquinone oxidoreductase, or complex I, is composed of a hydrophobic arm comprising the P module and a hydrophilic arm comprising the N and Q modules. The assembly of complex I is well characterized in humans and is catalyzed by a series of assembly factors that join the Q, P, and N modules sequentially. The complex I of protists and plants, however, contains additional ancestral features, namely a ferredoxin bridge that connects the matrix and the membrane arms and a γ carbonic anhydrase domain, whose mechanisms of assembly are unknown. In this work, a strain where the complex I assembly factor NDUFAF3 has been tagged with a 3×FLAG at the C-terminus is investigated in the green microalga Chlamydomonas reinhardtii. Like its human homolog, NDUFAF3 interacts strongly with the classical subunits of the Q and P modules, but also with the γ carbonic anhydrase domain and C1-FDX, a subunit of the ferredoxin bridge. The predicted structural positioning of NDUFAF3 within the Q module suggests a role in the formation of this bridge. In contrast, subunits of the N module are only loosely associated with NDUFAF3. We further demonstrate that the N module is attached at a later stage of assembly, suggesting that Chlamydomonas complex I assembles in a human-like sequence. This contrasts with what is documented in Angiosperms, where the N and Q modules are attached together before anchoring to the P module. Altogether, these results highlight a conserved and ancestral role of NDUFAF3 in complex I manufacture.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.