Ching-Feng Wu, Li-Pang Chang, Chan Lee, Ioannis Stergiopoulos, Li-Hung Chen
{"title":"pSIG plasmids, MoClo-compatible vectors for efficient production of chimeric double-stranded RNAs in Escherichia coli HT115 (DE3) strain.","authors":"Ching-Feng Wu, Li-Pang Chang, Chan Lee, Ioannis Stergiopoulos, Li-Hung Chen","doi":"10.1186/s13007-025-01413-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spray-induced gene silencing (SIGS) is a promising strategy for controlling plant diseases caused by pests, fungi, and viruses. The method involves spraying on plant surfaces double-stranded RNAs (dsRNAs) that target pathogen genes and inhibit pathogen growth via activation of the RNA interference machinery. Despite its potential, significant challenges remain in the application of SIGS, including producing large quantities of dsRNAs for field applications. While industrial-scale dsRNA production is feasible, most research laboratories still rely on costly and labor-intensive in vitro transcription kits that are difficult to scale up for field trials. Therefore, there is a critical need for highly efficient and scalable methods for producing diverse dsRNAs in research laboratories.</p><p><strong>Results: </strong>This study introduces pSIG plasmids, MoClo-compatible vectors designed for efficient dsRNA production in the Escherichia coli RNase III-deficient strain HT115 (DE3). The pSIG vectors enable the assembly of multiple DNA fragments in a single reaction using highly efficient Golden Gate cloning, thereby allowing the production of chimeric dsRNAs to simultaneously silence multiple genes in target pests and pathogens. To demonstrate the efficacy of this system, we generated 12 dsRNAs targeting essential genes in Botrytis cinerea. The results revealed that silencing the Bcerg1, Bcerg2, and Bcerg27 genes involved in the ergosterol biosynthesis pathway, significantly reduced fungal infection in plant leaves. Furthermore, we synthesized a chimeric dsRNA, Bcergi, that incorporates target fragments from Bcerg1, Bcerg2, and Bcerg27. Nevertheless, the Bcerg1 dsRNA alone achieved greater disease suppression than the chimeric Bcergi dsRNA.</p><p><strong>Conclusions: </strong>Here, we developed a highly efficient and scalable method for producing chimeric dsRNAs in E. coli HT115 (DE3) in research laboratories using our homemade pSIG plasmid vectors. This approach addresses key challenges in SIGS research, including the need to produce large quantities of dsRNA and identify effective dsRNAs, thus enhancing the feasibility of SIGS as a sustainable strategy for controlling plant diseases and pests in crops.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"96"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01413-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Spray-induced gene silencing (SIGS) is a promising strategy for controlling plant diseases caused by pests, fungi, and viruses. The method involves spraying on plant surfaces double-stranded RNAs (dsRNAs) that target pathogen genes and inhibit pathogen growth via activation of the RNA interference machinery. Despite its potential, significant challenges remain in the application of SIGS, including producing large quantities of dsRNAs for field applications. While industrial-scale dsRNA production is feasible, most research laboratories still rely on costly and labor-intensive in vitro transcription kits that are difficult to scale up for field trials. Therefore, there is a critical need for highly efficient and scalable methods for producing diverse dsRNAs in research laboratories.
Results: This study introduces pSIG plasmids, MoClo-compatible vectors designed for efficient dsRNA production in the Escherichia coli RNase III-deficient strain HT115 (DE3). The pSIG vectors enable the assembly of multiple DNA fragments in a single reaction using highly efficient Golden Gate cloning, thereby allowing the production of chimeric dsRNAs to simultaneously silence multiple genes in target pests and pathogens. To demonstrate the efficacy of this system, we generated 12 dsRNAs targeting essential genes in Botrytis cinerea. The results revealed that silencing the Bcerg1, Bcerg2, and Bcerg27 genes involved in the ergosterol biosynthesis pathway, significantly reduced fungal infection in plant leaves. Furthermore, we synthesized a chimeric dsRNA, Bcergi, that incorporates target fragments from Bcerg1, Bcerg2, and Bcerg27. Nevertheless, the Bcerg1 dsRNA alone achieved greater disease suppression than the chimeric Bcergi dsRNA.
Conclusions: Here, we developed a highly efficient and scalable method for producing chimeric dsRNAs in E. coli HT115 (DE3) in research laboratories using our homemade pSIG plasmid vectors. This approach addresses key challenges in SIGS research, including the need to produce large quantities of dsRNA and identify effective dsRNAs, thus enhancing the feasibility of SIGS as a sustainable strategy for controlling plant diseases and pests in crops.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.