Xinyu Zhao , Jiayu Fang , Sijie Yu , Guoxia Liu , Yanping Zhang , Yin Li , Taicheng Zhu
{"title":"Hac1p-based inverse secretory pathway engineering (Hi-SPE) of Pichia pastoris for improved glucose oxidase production","authors":"Xinyu Zhao , Jiayu Fang , Sijie Yu , Guoxia Liu , Yanping Zhang , Yin Li , Taicheng Zhu","doi":"10.1016/j.nbt.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Secretion and folding are common bottlenecks in protein expression using eukaryotic systems, and engineering the secretory pathway to enhance host cell capabilities is a key strategy for improving protein secretion. However, secretion is a very complex process, making the identification of likely targets for engineering a formidable task. In this study, using glucose oxidase (GOX) expression in <em>Pichia pastoris</em> (<em>Komagataella phaffii</em>) as a model, we introduce a strategy called Hac1p-based inverse secretory pathway engineering (Hi-SPE). This strategy leverages Hac1p, the actuator of the unfolded protein response, which is a naturally evolved mechanism to cope with protein overload in endoplasmic reticulum (ER) of eukaryotic cells. When combined with comparative transcriptomics, Hi-SPE narrows down the target from several hundred genes in traditional approaches to 20 secretion-related protein genes. Results showed that overexpression of six out of seven selected genes improved GOX secretion, including the co-chaperone, JEM1, which increased GOX expression per OD<sub>600</sub> by 147.6 %. Further optimization through combinatorial expression of secretion-related proteins led to a strain co-expressing <em>JEM1</em>, <em>KAR2</em>, and <em>CNE1</em>, achieving a GOX titer of 1903.2 U/mL in 1-L fed-batch fermentation. Additionally, transcriptomic analysis revealed the physiological effects of <em>JEM1</em> overexpression on <em>P</em>. <em>pastoris</em>. This study highlights Hi-SPE as a powerful strategy for improving protein secretion in eukaryotic systems.</div></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"89 ","pages":"Pages 82-90"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187167842500069X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Secretion and folding are common bottlenecks in protein expression using eukaryotic systems, and engineering the secretory pathway to enhance host cell capabilities is a key strategy for improving protein secretion. However, secretion is a very complex process, making the identification of likely targets for engineering a formidable task. In this study, using glucose oxidase (GOX) expression in Pichia pastoris (Komagataella phaffii) as a model, we introduce a strategy called Hac1p-based inverse secretory pathway engineering (Hi-SPE). This strategy leverages Hac1p, the actuator of the unfolded protein response, which is a naturally evolved mechanism to cope with protein overload in endoplasmic reticulum (ER) of eukaryotic cells. When combined with comparative transcriptomics, Hi-SPE narrows down the target from several hundred genes in traditional approaches to 20 secretion-related protein genes. Results showed that overexpression of six out of seven selected genes improved GOX secretion, including the co-chaperone, JEM1, which increased GOX expression per OD600 by 147.6 %. Further optimization through combinatorial expression of secretion-related proteins led to a strain co-expressing JEM1, KAR2, and CNE1, achieving a GOX titer of 1903.2 U/mL in 1-L fed-batch fermentation. Additionally, transcriptomic analysis revealed the physiological effects of JEM1 overexpression on P. pastoris. This study highlights Hi-SPE as a powerful strategy for improving protein secretion in eukaryotic systems.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.