{"title":"The Role of Exchange Energy in Modeling Core-Electron Binding Energies of Strongly Polar Bonds.","authors":"Feng Wang, Delano P Chong","doi":"10.3390/molecules30132887","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals-PW86x-PW91c (DFTpw), mPW1PW, and PBE50-across 68 C1s cases in small hydrocarbons and halogenated molecules (alkyl halides), using the delta self-consistent field ΔSCF (or ΔDFT) method developed by one of the authors over the past decade. The PW86x-PW91c functional achieves a root mean square deviation (RMSD) of 0.1735 eV, with improved accuracy for polar C-X bonds (X=O, F) using mPW1PW and PBE50, reducing the average absolute deviation (AAD) to ~0.132 eV. The study emphasizes the role of Hartree-Fock (HF) exchange in refining CEBE predictions and highlights the synergy between theoretical and experimental approaches. These insights lay the groundwork for machine learning (ML)-driven spectral analysis, advancing materials characterization, and catalysis through more reliable automated XPS assignments.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30132887","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals-PW86x-PW91c (DFTpw), mPW1PW, and PBE50-across 68 C1s cases in small hydrocarbons and halogenated molecules (alkyl halides), using the delta self-consistent field ΔSCF (or ΔDFT) method developed by one of the authors over the past decade. The PW86x-PW91c functional achieves a root mean square deviation (RMSD) of 0.1735 eV, with improved accuracy for polar C-X bonds (X=O, F) using mPW1PW and PBE50, reducing the average absolute deviation (AAD) to ~0.132 eV. The study emphasizes the role of Hartree-Fock (HF) exchange in refining CEBE predictions and highlights the synergy between theoretical and experimental approaches. These insights lay the groundwork for machine learning (ML)-driven spectral analysis, advancing materials characterization, and catalysis through more reliable automated XPS assignments.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.