Strategies Used for the Discovery of New Microbial Metabolites with Antibiotic Activity.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pablo Dasí-Delgado, Cecilia Andreu, Marcel Lí Del Olmo
{"title":"Strategies Used for the Discovery of New Microbial Metabolites with Antibiotic Activity.","authors":"Pablo Dasí-Delgado, Cecilia Andreu, Marcel Lí Del Olmo","doi":"10.3390/molecules30132868","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of new microbial metabolites is essential to combat the alarming rise in antimicrobial resistance and to meet emerging medical needs. This work critically reviews current strategies for identifying antimicrobial compounds, emphasizing the potential of microorganisms as a rich source of bioactive secondary metabolites. This review explores innovative methods, such as investigating extreme environments where adverse conditions favor the emergence of unique metabolites; developing techniques, like the iChip, to cultivate previously uncultivable bacteria; using metagenomics to analyze complex samples that are difficult to isolate; and integrates artificial intelligence to accelerate genomic mining, structural prediction, and drug discovery optimization processes. The importance of overcoming current challenges, such as replicating findings, low research investment, and the lack of adapted collection technologies, is also emphasized. Additionally, this work analyzes the crucial role of bacterial resistance and the necessity of a holistic approach involving new technologies, sustained investment, and interdisciplinary collaboration. This work emphasizes not only the current state of metabolite discovery but also the challenges that must be addressed to ensure a continuous flow of new therapeutic molecules in the coming decades.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30132868","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of new microbial metabolites is essential to combat the alarming rise in antimicrobial resistance and to meet emerging medical needs. This work critically reviews current strategies for identifying antimicrobial compounds, emphasizing the potential of microorganisms as a rich source of bioactive secondary metabolites. This review explores innovative methods, such as investigating extreme environments where adverse conditions favor the emergence of unique metabolites; developing techniques, like the iChip, to cultivate previously uncultivable bacteria; using metagenomics to analyze complex samples that are difficult to isolate; and integrates artificial intelligence to accelerate genomic mining, structural prediction, and drug discovery optimization processes. The importance of overcoming current challenges, such as replicating findings, low research investment, and the lack of adapted collection technologies, is also emphasized. Additionally, this work analyzes the crucial role of bacterial resistance and the necessity of a holistic approach involving new technologies, sustained investment, and interdisciplinary collaboration. This work emphasizes not only the current state of metabolite discovery but also the challenges that must be addressed to ensure a continuous flow of new therapeutic molecules in the coming decades.

发现具有抗生素活性的新微生物代谢物的策略。
发现新的微生物代谢物对于应对抗菌素耐药性的惊人上升和满足新出现的医疗需求至关重要。这项工作批判性地回顾了目前鉴定抗菌化合物的策略,强调了微生物作为生物活性次级代谢物的丰富来源的潜力。这篇综述探讨了创新的方法,如研究极端环境,不利条件有利于独特代谢物的出现;开发像芯片这样的技术来培养以前无法培养的细菌;使用宏基因组学分析难以分离的复杂样本;并集成人工智能来加速基因组挖掘、结构预测和药物发现优化过程。报告还强调了克服当前挑战的重要性,例如重复发现、低研究投资和缺乏适合的收集技术。此外,本工作还分析了细菌耐药性的关键作用,以及涉及新技术、持续投资和跨学科合作的整体方法的必要性。这项工作不仅强调了代谢物发现的现状,而且强调了必须解决的挑战,以确保未来几十年新的治疗分子的持续流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信