Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles, Sonia Medina
{"title":"Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol.","authors":"Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles, Sonia Medina","doi":"10.3390/molecules30132889","DOIUrl":null,"url":null,"abstract":"<p><p>Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG's potential as a therapeutic agent and laying a foundation for further exploration of its biological power.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30132889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG's potential as a therapeutic agent and laying a foundation for further exploration of its biological power.

棕榈酰表没食子儿茶素没食子酸酯与其天然(聚)酚诱导的时间依赖性肝细胞毒性和线粒体重构的证据。
脂酚是两亲性分子中酚类和脂类特性的结合,具有独特的生物活性,具有治疗潜力,包括抗炎和抗氧化作用。因此,棕榈酰表没食子儿茶素没食子酸酯(PEGCG)是广泛研究的(多)酚表没食子儿茶素没食子酸酯(EGCG)的亲脂衍生物,由于细胞摄取的改善,在富含脂的环境中增强了稳定性和生物利用度。尽管如此,亲脂性酯化对某些细胞过程的影响,特别是在线粒体水平上,仍未得到充分探讨。根据这一知识缺口,本研究在体外揭示了PEGCG对肝癌细胞系HepG2的细胞毒性和线粒体作用。开发了一系列测定方法,包括MTS(3-(4,5-二甲基噻唑-2-基)-5-(3-羧基甲氧基苯基)-2-(4-磺苯基)- 2h -四氮唑)测定、流式细胞术和电子显微镜,可以描述EGCG和PEGCG的不同生物潜力。因此,虽然EGCG表现出最小的细胞毒性和诱导凋亡,但在1µmol/L浓度下,PEGCG在24 h时剂量依赖性地降低了细胞活力,并引发了显著的线粒体损伤,包括断裂和嵴丢失。然而,在48 h时,PEGCG处理的细胞恢复了活力和线粒体结构,这表明PEGCG诱导的分子变化的适应性机制被激活。这些发现强调了亲脂性儿茶素与细胞应激反应之间的动态相互作用,为PEGCG作为治疗药物的潜力提供了有价值的见解,并为进一步探索其生物学能力奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信