{"title":"A Novel HDAC6 Inhibitor Enhances the Efficacy of Paclitaxel Against Ovarian Cancer Cells.","authors":"An-Jui Chi, Jui-Ling Hsu, Yun-Xin Xiao, Ji-Wang Chern, Jih-Hwa Guh, Chao-Wu Yu, Lih-Ching Hsu","doi":"10.3390/molecules30132793","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound <b>25253</b> demonstrated the most potent anti-proliferative activity and effective synergy with paclitaxel, which was also validated in TOV21G ovarian cancer cells. The combination of <b>25253</b> and paclitaxel significantly induced subG1 and apoptotic cells, revealed by PI staining assay and Annexin V-FITC/PI double staining assay, respectively. Western blot analysis showed downregulation of Bcl-2 and Bcl-XL, and upregulation of Bax and Bak, indicating that apoptosis was mediated through the intrinsic pathway. The combination increased γ-H2AX and p-p53 protein levels, suggesting the induction of DNA damage. Furthermore, HDAC6 was downregulated and acetylated α-tubulin was profoundly increased. Compound <b>25253</b> enhanced the inhibitory effect of paclitaxel on cell migration and invasion, possibly due to the extensive accumulation of acetylated α-tubulin, which affected microtubule dynamics. Taken together, the combination of <b>25253</b> and paclitaxel synergistically inhibited the growth, migration, and invasion of ovarian cancer cells and induced apoptosis, providing supporting evidence that the combination of HDAC6 inhibitors and paclitaxel may be a promising treatment strategy for ovarian cancer.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30132793","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound 25253 demonstrated the most potent anti-proliferative activity and effective synergy with paclitaxel, which was also validated in TOV21G ovarian cancer cells. The combination of 25253 and paclitaxel significantly induced subG1 and apoptotic cells, revealed by PI staining assay and Annexin V-FITC/PI double staining assay, respectively. Western blot analysis showed downregulation of Bcl-2 and Bcl-XL, and upregulation of Bax and Bak, indicating that apoptosis was mediated through the intrinsic pathway. The combination increased γ-H2AX and p-p53 protein levels, suggesting the induction of DNA damage. Furthermore, HDAC6 was downregulated and acetylated α-tubulin was profoundly increased. Compound 25253 enhanced the inhibitory effect of paclitaxel on cell migration and invasion, possibly due to the extensive accumulation of acetylated α-tubulin, which affected microtubule dynamics. Taken together, the combination of 25253 and paclitaxel synergistically inhibited the growth, migration, and invasion of ovarian cancer cells and induced apoptosis, providing supporting evidence that the combination of HDAC6 inhibitors and paclitaxel may be a promising treatment strategy for ovarian cancer.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.