Volatile and non-volatile nano-electromechanical switches fabricated in a CMOS-compatible silicon-on-insulator foundry process.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Yingying Li, Simon J Bleiker, Elliott Worsey, Maël Dagon, Pierre Edinger, Alain Yuji Takabayashi, Niels Quack, Peter Verheyen, Wim Bogaerts, Kristinn B Gylfason, Dinesh Pamunuwa, Frank Niklaus
{"title":"Volatile and non-volatile nano-electromechanical switches fabricated in a CMOS-compatible silicon-on-insulator foundry process.","authors":"Yingying Li, Simon J Bleiker, Elliott Worsey, Maël Dagon, Pierre Edinger, Alain Yuji Takabayashi, Niels Quack, Peter Verheyen, Wim Bogaerts, Kristinn B Gylfason, Dinesh Pamunuwa, Frank Niklaus","doi":"10.1038/s41378-025-00964-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoelectromechanical (NEM) switches have the advantages of zero leakage current, abrupt switching characteristics, and harsh environmental capabilities. This makes them a promising component for digital computing circuits when high energy efficiency under extreme environmental conditions is important. However, to make NEM-based logic circuits commercially viable, NEM switches must be manufacturable in existing semiconductor foundry platforms to guarantee reliable switch fabrication and very large-scale integration densities, which remains a big challenge. Here, we demonstrate the use of a commercial silicon-on-insulator (SOI) foundry platform (iSiPP50G by IMEC, Belgium) to implement monolithically integrated silicon (Si) NEM switches. Using this SOI foundry platform featuring sub-200 nm lithography technology, we implemented two different types of NEM switches: (1) a volatile 3-terminal (3-T) NEM switch with a low actuation voltage of 5.6 V and (2) a bi-stable 7-terminal (7-T) NEM switch, featuring either volatile or non-volatile switching behavior, depending on the switch contact design. The experimental results presented here show how an established CMOS-compatible SOI foundry process can be utilized to realize highly integrated Si NEM switches, removing a significant barrier towards scalable manufacturing of high performance and high-density NEM-based programmable logic circuits and non-volatile memories.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"140"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00964-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoelectromechanical (NEM) switches have the advantages of zero leakage current, abrupt switching characteristics, and harsh environmental capabilities. This makes them a promising component for digital computing circuits when high energy efficiency under extreme environmental conditions is important. However, to make NEM-based logic circuits commercially viable, NEM switches must be manufacturable in existing semiconductor foundry platforms to guarantee reliable switch fabrication and very large-scale integration densities, which remains a big challenge. Here, we demonstrate the use of a commercial silicon-on-insulator (SOI) foundry platform (iSiPP50G by IMEC, Belgium) to implement monolithically integrated silicon (Si) NEM switches. Using this SOI foundry platform featuring sub-200 nm lithography technology, we implemented two different types of NEM switches: (1) a volatile 3-terminal (3-T) NEM switch with a low actuation voltage of 5.6 V and (2) a bi-stable 7-terminal (7-T) NEM switch, featuring either volatile or non-volatile switching behavior, depending on the switch contact design. The experimental results presented here show how an established CMOS-compatible SOI foundry process can be utilized to realize highly integrated Si NEM switches, removing a significant barrier towards scalable manufacturing of high performance and high-density NEM-based programmable logic circuits and non-volatile memories.

挥发性和非挥发性纳米机电开关在cmos兼容的硅绝缘体上铸造工艺制造。
纳米机电(NEM)开关具有零泄漏电流、突变开关特性和恶劣环境性能等优点。当极端环境条件下的高能效很重要时,这使它们成为数字计算电路中有前途的组件。然而,为了使基于NEM的逻辑电路具有商业可行性,NEM开关必须在现有的半导体代工平台上制造,以保证可靠的开关制造和非常大规模的集成密度,这仍然是一个很大的挑战。在这里,我们演示了使用商业绝缘体上硅(SOI)代工平台(iSiPP50G由IMEC,比利时)来实现单片集成硅(Si) NEM开关。利用采用亚200纳米光刻技术的SOI代工平台,我们实现了两种不同类型的NEM开关:(1)挥发性3端(3-T) NEM开关,其驱动电压低至5.6 V;(2)双稳态7端(7-T) NEM开关,根据开关触点设计,具有挥发性或非挥发性开关行为。本文的实验结果显示了如何利用已建立的cmos兼容SOI代工工艺来实现高度集成的Si NEM开关,从而消除了可扩展制造高性能和高密度基于NEM的可编程逻辑电路和非易失性存储器的重大障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信