Brandon S Gerig, Ross Gay, Reid Swanson, Gord Paterson
{"title":"Potential for contaminant biotransport by migratory fish prior to dam removal and selective fish passage in a Great Lakes tributary.","authors":"Brandon S Gerig, Ross Gay, Reid Swanson, Gord Paterson","doi":"10.1093/inteam/vjaf087","DOIUrl":null,"url":null,"abstract":"<p><p>Dam removals and fish passage can enhance aquatic connectivity but may also promote upstream transport of legacy contaminants by migratory fish. This study assessed the potential for contaminant biotransport in Michigan's Boardman River following the planned removal of the Union Street Dam and installation of FishPass, a selective fish passage facility. We quantified polychlorinated biphenyls (PCBs), mercury (Hg), and organochlorine pesticides in carcass and egg samples from migratory species including Chinook and coho salmon, migratory rainbow trout, common white and longnose sucker, lake trout, walleye, and sea lamprey. Chinook salmon exhibited the highest PCB concentrations in both carcasses and eggs, exceeding those of rainbow trout and native suckers. Similarly, Chinook salmon were predicted to deposit up to 2,200 mg of PCBs upstream under a high run size scenario-over 80 and 100 times greater than rainbow trout and native suckers. While suckers had lower individual contaminant burdens, their relatively large run sizes contributed moderately to potential contaminant biotransport compared to rainbow trout indicating an interaction between abundance and spawner contaminant burden. Stream-resident brook and brown trout in reaches open to migratory fish had higher PCBs and lower Hg concentrations than in closed reaches, likely reflecting dietary exposure to eggs and growth dilution. These results demonstrate that the potential for contaminant biotransport varies widely among migratory species and highlights the need for managers to consider both contaminant burden and run size when making fish passage decisions to balance ecological restoration with contaminant exposure risk.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf087","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dam removals and fish passage can enhance aquatic connectivity but may also promote upstream transport of legacy contaminants by migratory fish. This study assessed the potential for contaminant biotransport in Michigan's Boardman River following the planned removal of the Union Street Dam and installation of FishPass, a selective fish passage facility. We quantified polychlorinated biphenyls (PCBs), mercury (Hg), and organochlorine pesticides in carcass and egg samples from migratory species including Chinook and coho salmon, migratory rainbow trout, common white and longnose sucker, lake trout, walleye, and sea lamprey. Chinook salmon exhibited the highest PCB concentrations in both carcasses and eggs, exceeding those of rainbow trout and native suckers. Similarly, Chinook salmon were predicted to deposit up to 2,200 mg of PCBs upstream under a high run size scenario-over 80 and 100 times greater than rainbow trout and native suckers. While suckers had lower individual contaminant burdens, their relatively large run sizes contributed moderately to potential contaminant biotransport compared to rainbow trout indicating an interaction between abundance and spawner contaminant burden. Stream-resident brook and brown trout in reaches open to migratory fish had higher PCBs and lower Hg concentrations than in closed reaches, likely reflecting dietary exposure to eggs and growth dilution. These results demonstrate that the potential for contaminant biotransport varies widely among migratory species and highlights the need for managers to consider both contaminant burden and run size when making fish passage decisions to balance ecological restoration with contaminant exposure risk.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.