{"title":"Ultrasound-Assisted Enhancement of Gel Properties in <i>Hypomesus olidus</i> Surimi.","authors":"Yuan Fu, Guochuan Jiang, Xing Sun, Shuibing Yang, Jiahang Yu, Xuejun Liu, Liyan Wang, Shuangjie Zhu","doi":"10.3390/foods14132363","DOIUrl":null,"url":null,"abstract":"<p><p>Surimi gel quality is crucial for seafood product texture and water retention, yet conventional processing often fails to maximize the potential of underutilized species like <i>Hypomesus olidus</i>. This study investigated the effects of ultrasonic power (100, 200, 400, 800 W) and time (5, 10, 15, and 20 min) on gel properties to establish optimal processing conditions. Results demonstrated that moderate ultrasonic treatment (200 W, 10 min) significantly enhanced gel quality, yielding a dense, uniform network with improved (<i>p</i> < 0.05) functionality: thr water-holding capacity increased by 35.88%, gel strength increased by 143.75%, and textural properties (hardness, cohesiveness, springiness, gumminess, chewiness) improved by 124.02%, 25%, 8.69%, 201.29%, 188.08% while maintaining color stability (1.59% whiteness increase). These improvements were attributed to optimized protein cross-linking and network formation. These findings provide a scientific basis for the ultrasonic processing of <i>Hypomesus solidus</i> surimi, offering practical parameters for industrial applications to enhance product quality efficiently. Future research should explore scaling effects and synergistic processing methods.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14132363","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surimi gel quality is crucial for seafood product texture and water retention, yet conventional processing often fails to maximize the potential of underutilized species like Hypomesus olidus. This study investigated the effects of ultrasonic power (100, 200, 400, 800 W) and time (5, 10, 15, and 20 min) on gel properties to establish optimal processing conditions. Results demonstrated that moderate ultrasonic treatment (200 W, 10 min) significantly enhanced gel quality, yielding a dense, uniform network with improved (p < 0.05) functionality: thr water-holding capacity increased by 35.88%, gel strength increased by 143.75%, and textural properties (hardness, cohesiveness, springiness, gumminess, chewiness) improved by 124.02%, 25%, 8.69%, 201.29%, 188.08% while maintaining color stability (1.59% whiteness increase). These improvements were attributed to optimized protein cross-linking and network formation. These findings provide a scientific basis for the ultrasonic processing of Hypomesus solidus surimi, offering practical parameters for industrial applications to enhance product quality efficiently. Future research should explore scaling effects and synergistic processing methods.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds