{"title":"The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks.","authors":"Yanan Wu, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun, Hanxu Pan","doi":"10.3390/foods14132374","DOIUrl":null,"url":null,"abstract":"<p><p>Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14132374","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds