Nan Zeng, Rutao Gai, Dandan Wang, Jiahe Pang, Dingcun Zhang, Junliang Ge, Xinyue Bi, Zhiyong Zhang, Ning Zhang, Bingxue Li
{"title":"Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds.","authors":"Nan Zeng, Rutao Gai, Dandan Wang, Jiahe Pang, Dingcun Zhang, Junliang Ge, Xinyue Bi, Zhiyong Zhang, Ning Zhang, Bingxue Li","doi":"10.3390/foods14132369","DOIUrl":null,"url":null,"abstract":"<p><p>Sweet cherry (<i>Prunus avium</i> L.), as a high-economic-value fruit with both nutritional and health functions, faces severely constrained plant growth due to underdeveloped root systems and suboptimal orchard site conditions. Plant growth-promoting rhizobacteria (PGPR) demonstrate application potential in regulating plant development and improving soil structure through the release of volatile organic compounds (VOCs). This study systematically evaluated the effects of VOCs from three PGPR strains-<i>Pantoea ananatis</i> D1-28, <i>Burkholderia</i> sp. D4-24, and <i>Burkholderia territorii</i> D4-36-on cherry root development and rhizosphere microbial communities. The results indicate that when D1-28 and D4-24 strains were at 10<sup>3</sup> cfu·mL<sup>-1</sup> and D4-36 was at 10<sup>5</sup> CFU·mL<sup>-1</sup>, their VOCs exhibited optimal growth-promoting effects. Compared with the control group, significant improvements were observed in cherry seedling parameters, including plant height, total biomass, root length, root surface area, and root volume. The VOCs from these strains synergistically promoted plant growth by regulating auxin synthesis pathways in cherry roots while enhancing the relative abundance of beneficial rhizosphere microorganisms. This study establishes the strain-concentration-effect relationship, providing a theoretical foundation to optimize soil microbial environments and promote cherry root development using PGPR.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14132369","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sweet cherry (Prunus avium L.), as a high-economic-value fruit with both nutritional and health functions, faces severely constrained plant growth due to underdeveloped root systems and suboptimal orchard site conditions. Plant growth-promoting rhizobacteria (PGPR) demonstrate application potential in regulating plant development and improving soil structure through the release of volatile organic compounds (VOCs). This study systematically evaluated the effects of VOCs from three PGPR strains-Pantoea ananatis D1-28, Burkholderia sp. D4-24, and Burkholderia territorii D4-36-on cherry root development and rhizosphere microbial communities. The results indicate that when D1-28 and D4-24 strains were at 103 cfu·mL-1 and D4-36 was at 105 CFU·mL-1, their VOCs exhibited optimal growth-promoting effects. Compared with the control group, significant improvements were observed in cherry seedling parameters, including plant height, total biomass, root length, root surface area, and root volume. The VOCs from these strains synergistically promoted plant growth by regulating auxin synthesis pathways in cherry roots while enhancing the relative abundance of beneficial rhizosphere microorganisms. This study establishes the strain-concentration-effect relationship, providing a theoretical foundation to optimize soil microbial environments and promote cherry root development using PGPR.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds