{"title":"Saponins from <i>Solanum nigrum</i> L. Fruit: Extraction Optimization, Structural Characterization, and Dual-Functional Efficacy.","authors":"Shuyuan Chen, Weiyun Guo, Tonghe Zhang, Jianfang Chen, Li Huang, Jihong Huang, Ruqiang Huang","doi":"10.3390/foods14132370","DOIUrl":null,"url":null,"abstract":"<p><p><i>Solanum nigrum</i> L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from <i>S. nigrum</i> fruits (8.59% total saponin yield), followed by isolation via column chromatography and structural elucidation using spectroscopic analyses (IR, NMR, and MS). Concurrently, the antioxidant properties and antibacterial activity of the purified substances were detected and analyzed. The three saponins (SNL1, SNL2, SNL3) were identified as γ<sub>2</sub>-Solamargine , Diosgenin, and β-Solanine. The <i>n</i>-butanol -purified fraction demonstrated a remarkable capacity to scavenge DPPH, hydroxyl, and ABTS radicals (DPPH IC50 = 0.0096 mg/mL; hydroxyl radical IC50 = 0.8 mg/mL; ABTS IC50 = 0.061 μg/mL), indicating the inhibition of a multi-pathway oxidative chain reaction. Concurrently, the saponins exhibited selective antimicrobial efficacy against key foodborne pathogens, particularly Escherichia coli. To the best of our knowledge, this work provides the first empirical evidence of <i>S. nigrum</i> fruit saponins as dual-functional natural preservatives, synergistically suppressing lipid oxidation and microbial growth. These findings highlight their potential as safer, multi-mechanistic alternatives to synthetic additives, aligning with clean-label food industry demands.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 13","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14132370","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solanum nigrum L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from S. nigrum fruits (8.59% total saponin yield), followed by isolation via column chromatography and structural elucidation using spectroscopic analyses (IR, NMR, and MS). Concurrently, the antioxidant properties and antibacterial activity of the purified substances were detected and analyzed. The three saponins (SNL1, SNL2, SNL3) were identified as γ2-Solamargine , Diosgenin, and β-Solanine. The n-butanol -purified fraction demonstrated a remarkable capacity to scavenge DPPH, hydroxyl, and ABTS radicals (DPPH IC50 = 0.0096 mg/mL; hydroxyl radical IC50 = 0.8 mg/mL; ABTS IC50 = 0.061 μg/mL), indicating the inhibition of a multi-pathway oxidative chain reaction. Concurrently, the saponins exhibited selective antimicrobial efficacy against key foodborne pathogens, particularly Escherichia coli. To the best of our knowledge, this work provides the first empirical evidence of S. nigrum fruit saponins as dual-functional natural preservatives, synergistically suppressing lipid oxidation and microbial growth. These findings highlight their potential as safer, multi-mechanistic alternatives to synthetic additives, aligning with clean-label food industry demands.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds