Non-human Primate Lymphocryptoviruses: Past, Present, and Future.

3区 医学 Q2 Medicine
Gabriela M Escalante, Ivana G Reidel, Janine Mühe, Fred Wang, Javier Gordon Ogembo
{"title":"Non-human Primate Lymphocryptoviruses: Past, Present, and Future.","authors":"Gabriela M Escalante, Ivana G Reidel, Janine Mühe, Fred Wang, Javier Gordon Ogembo","doi":"10.1007/82_2025_313","DOIUrl":null,"url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) homologues from non-human primates (NHPs) have been studied for nearly as long as EBV itself. Early serologic and DNA hybridization studies uncovered the existence of EBV-like lymphocryptoviruses (LCVs) across multiple NHP species. Subsequent molecular and genomic analyses revealed that LCVs from both humans and NHPs share strikingly similar colinear genome organization and encode homologous proteins expressed during both latent and lytic phases of infection, despite a level of species-specific restriction being present as shown by cross-infection experiments. Importantly, rhLCV infection in rhesus macaques faithfully recapitulates key aspects of EBV infection in humans, allowing for a powerful EBV surrogate animal model to study EBV infection and pathogenesis. In parallel, EBV susceptibility in the common marmoset offers a more accessible platform for EBV vaccine development with the potential to complement rhLCV studies. This chapter builds upon the First Edition of this work by taking the original text, beautifully crafted by Drs. Janine Mühe and Fred Wang, and updating it with relevant new insights and information. The updated chapter reviews over six decades of progress in characterizing LCVs that naturally infect primates, highlights the transformative use of rhesus macaques and common marmosets as experimental models of EBV infection, and explores how these systems are shaping the future of EBV research and vaccine development.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2025_313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Epstein-Barr virus (EBV) homologues from non-human primates (NHPs) have been studied for nearly as long as EBV itself. Early serologic and DNA hybridization studies uncovered the existence of EBV-like lymphocryptoviruses (LCVs) across multiple NHP species. Subsequent molecular and genomic analyses revealed that LCVs from both humans and NHPs share strikingly similar colinear genome organization and encode homologous proteins expressed during both latent and lytic phases of infection, despite a level of species-specific restriction being present as shown by cross-infection experiments. Importantly, rhLCV infection in rhesus macaques faithfully recapitulates key aspects of EBV infection in humans, allowing for a powerful EBV surrogate animal model to study EBV infection and pathogenesis. In parallel, EBV susceptibility in the common marmoset offers a more accessible platform for EBV vaccine development with the potential to complement rhLCV studies. This chapter builds upon the First Edition of this work by taking the original text, beautifully crafted by Drs. Janine Mühe and Fred Wang, and updating it with relevant new insights and information. The updated chapter reviews over six decades of progress in characterizing LCVs that naturally infect primates, highlights the transformative use of rhesus macaques and common marmosets as experimental models of EBV infection, and explores how these systems are shaping the future of EBV research and vaccine development.

非人灵长类淋巴隐病毒:过去、现在和未来。
来自非人类灵长类动物(NHPs)的eb病毒(EBV)同源物的研究时间几乎与eb病毒本身一样长。早期血清学和DNA杂交研究发现,在多个NHP物种中存在ebv样淋巴隐病毒(lcv)。随后的分子和基因组分析显示,尽管交叉感染实验显示存在一定程度的物种特异性限制,但来自人类和NHPs的lcv具有惊人的相似共线性基因组组织,并编码在感染潜伏期和裂解期表达的同源蛋白。重要的是,恒河猴的rhLCV感染忠实地概括了人类EBV感染的关键方面,允许一个强大的EBV替代动物模型来研究EBV感染和发病机制。与此同时,普通狨猴的EBV易感性为EBV疫苗开发提供了一个更容易获得的平台,有可能补充rhLCV研究。本章建立在第一版的这项工作,采取原始文本,精美的制作博士。Janine m he和Fred Wang,并更新相关的新见解和信息。更新后的章节回顾了60多年来在描述自然感染灵长类动物的lcv特征方面取得的进展,强调了恒河猴和普通狨猴作为EBV感染实验模型的转变性使用,并探讨了这些系统如何影响EBV研究和疫苗开发的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信