Chromatin Control of EBV Infection and Latency.

3区 医学 Q2 Medicine
Paul M Lieberman, Italo Tempera
{"title":"Chromatin Control of EBV Infection and Latency.","authors":"Paul M Lieberman, Italo Tempera","doi":"10.1007/82_2025_318","DOIUrl":null,"url":null,"abstract":"<p><p>Epstein-Barr Virus (EBV) establishes latent infection as a circular, chromatinized episome that can persist in the nucleus of dividing and quiescent B cells, as well as in some NK, T, and epithelial cancer cells. During latency, the viral genome can express a diverse program of viral genes that have profound effects on the host cell, including capacity for immortalization, metabolic shifts, and immune evasion. The selective expression of viral genes during latency requires complex coordination between viral and host factors. This coordination is regulated by the chromatin structure and epigenetic programming of the viral genome. Epigenetic programming is determined by chromatin assembly, nucleosome positioning, histone and DNA modifications, transcription factor binding, RNA polymerase signaling, DNA looping, higher-ordered chromatin architecture, and interactions with host chromosome domains and territories. In addition, the latent viral genome divides using host replication and chromosome segregation machinery. Under stress conditions, the viral episome can switch into a lytic cycle where many additional viral factors are expressed to control late gene expression and viral rolling-circle replication followed by virion assembly and packaging. How the chromatin structure of the virus controls and is coordinated with all of these different processes and transitions is the focus of this chapter. Here we highlight recent advances in EBV chromatin control since the first edition of this chapter.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2025_318","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Epstein-Barr Virus (EBV) establishes latent infection as a circular, chromatinized episome that can persist in the nucleus of dividing and quiescent B cells, as well as in some NK, T, and epithelial cancer cells. During latency, the viral genome can express a diverse program of viral genes that have profound effects on the host cell, including capacity for immortalization, metabolic shifts, and immune evasion. The selective expression of viral genes during latency requires complex coordination between viral and host factors. This coordination is regulated by the chromatin structure and epigenetic programming of the viral genome. Epigenetic programming is determined by chromatin assembly, nucleosome positioning, histone and DNA modifications, transcription factor binding, RNA polymerase signaling, DNA looping, higher-ordered chromatin architecture, and interactions with host chromosome domains and territories. In addition, the latent viral genome divides using host replication and chromosome segregation machinery. Under stress conditions, the viral episome can switch into a lytic cycle where many additional viral factors are expressed to control late gene expression and viral rolling-circle replication followed by virion assembly and packaging. How the chromatin structure of the virus controls and is coordinated with all of these different processes and transitions is the focus of this chapter. Here we highlight recent advances in EBV chromatin control since the first edition of this chapter.

EBV感染和潜伏期的染色质控制。
eb病毒(EBV)是一种环状的、染色质化的潜伏感染体,它可以持续存在于分裂和静止的B细胞的细胞核中,也可以存在于一些NK、T和上皮细胞中。在潜伏期间,病毒基因组可以表达多种对宿主细胞有深远影响的病毒基因程序,包括永生能力、代谢变化和免疫逃避。病毒基因在潜伏期的选择性表达需要病毒和宿主因子之间复杂的协调。这种协调是由病毒基因组的染色质结构和表观遗传编程调节的。表观遗传编程是由染色质组装、核小体定位、组蛋白和DNA修饰、转录因子结合、RNA聚合酶信号、DNA环、高阶染色质结构以及与宿主染色体结构域和区域的相互作用决定的。此外,潜伏病毒基因组通过宿主复制和染色体分离机制进行分裂。在胁迫条件下,病毒片段可以切换到裂解周期,其中表达许多额外的病毒因子来控制晚期基因表达和病毒滚动圈复制,然后是病毒粒子组装和包装。病毒的染色质结构如何控制和协调所有这些不同的过程和转变是本章的重点。在这里,我们强调了自本章第一版以来EBV染色质控制的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信