{"title":"The role of platelets in tumor immune evasion and metastasis: mechanisms and therapeutic implications.","authors":"Jiaqi Gan, Xinjun Zhang, Jie Guo","doi":"10.1186/s12935-025-03877-w","DOIUrl":null,"url":null,"abstract":"<p><p>Only circulating tumor cells (CTCs) that successfully evade immune surveillance upon entering the bloodstream can lead to clonal expansion and metastasis. Cancer progression is accompanied by pathophysiological processes such as platelet activation and thrombosis. Platelets secrete a variety of growth factors to stimulate cancer cell proliferation, regulate tumor angiogenesis, and subsequently mediate surface changes in cancer cells to promote invasion and progression. As part of a dangerous alliance, CTCs and platelets induce mutual activation. Activated platelets aggregate and encapsulate tumor cells, forming microtumor thrombi containing fibrin clots that act as protective barriers. These platelets interact with immune cells, including NK cells, macrophages, neutrophils, and T cells, to facilitate cancer metastasis and progression through various mechanisms. The formation of a favorable tumor microenvironment (TME) and pre-metastatic niche aids cancer cells in evading immune surveillance. Multiple signaling pathways and immune checkpoints are also involved in this process. Given the significant role of platelets in tumor immune evasion, anti-cancer strategies targeting platelets and their potential use as \"bionic drug delivery systems\" for anti-tumor drugs hold broad prospects in emerging tumor therapies.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"258"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03877-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Only circulating tumor cells (CTCs) that successfully evade immune surveillance upon entering the bloodstream can lead to clonal expansion and metastasis. Cancer progression is accompanied by pathophysiological processes such as platelet activation and thrombosis. Platelets secrete a variety of growth factors to stimulate cancer cell proliferation, regulate tumor angiogenesis, and subsequently mediate surface changes in cancer cells to promote invasion and progression. As part of a dangerous alliance, CTCs and platelets induce mutual activation. Activated platelets aggregate and encapsulate tumor cells, forming microtumor thrombi containing fibrin clots that act as protective barriers. These platelets interact with immune cells, including NK cells, macrophages, neutrophils, and T cells, to facilitate cancer metastasis and progression through various mechanisms. The formation of a favorable tumor microenvironment (TME) and pre-metastatic niche aids cancer cells in evading immune surveillance. Multiple signaling pathways and immune checkpoints are also involved in this process. Given the significant role of platelets in tumor immune evasion, anti-cancer strategies targeting platelets and their potential use as "bionic drug delivery systems" for anti-tumor drugs hold broad prospects in emerging tumor therapies.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.