Exposure to polystyrene nanoparticles leads to dysfunction in DNA repair mechanisms in Caco-2 cells.

IF 4.3 2区 生物学 Q1 BIOLOGY
Agata Kustra, Mirosław Zając, Piotr Bednarczyk, Kamila Maliszewska-Olejniczak
{"title":"Exposure to polystyrene nanoparticles leads to dysfunction in DNA repair mechanisms in Caco-2 cells.","authors":"Agata Kustra, Mirosław Zając, Piotr Bednarczyk, Kamila Maliszewska-Olejniczak","doi":"10.1186/s40659-025-00629-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent studies have highlighted the critical health implications of environmental exposure to nanoplastics, particularly concerning their effects on human gastrointestinal cells. In this study, we used human colorectal adenocarcinoma (Caco-2) cells to investigate the exposure of polystyrene nanoparticles (PNPs) to cellular processes and DNA repair.</p><p><strong>Methods: </strong>We exposed Caco-2 cells to various concentrations of PNPs and monitored cytotoxicity, ROS levels, PARP-1-dependent apoptosis, DNA damage, and changes in DNA damage response (DDR) gene expression.</p><p><strong>Results: </strong>The results indicated that although PNPs did not directly cause SSBs or DSBs, as evidenced by comet assays and γH2AX staining, they induced oxidative stress and significantly altered the expression of genes required for DDR. In particular, critical genes involved in the base excision repair (BER) pathway and DSBs repair were downregulated, suggesting a potential impairment of the cell's ability to repair oxidative DNA damage.</p><p><strong>Conclusions: </strong>This study highlights the sublethal effects of nanoplastics on intestinal barrier cells. It underscores the possible risks of exposure to these environmental contaminants, which can lead to genome instability and other long-term health consequences.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"49"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00629-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent studies have highlighted the critical health implications of environmental exposure to nanoplastics, particularly concerning their effects on human gastrointestinal cells. In this study, we used human colorectal adenocarcinoma (Caco-2) cells to investigate the exposure of polystyrene nanoparticles (PNPs) to cellular processes and DNA repair.

Methods: We exposed Caco-2 cells to various concentrations of PNPs and monitored cytotoxicity, ROS levels, PARP-1-dependent apoptosis, DNA damage, and changes in DNA damage response (DDR) gene expression.

Results: The results indicated that although PNPs did not directly cause SSBs or DSBs, as evidenced by comet assays and γH2AX staining, they induced oxidative stress and significantly altered the expression of genes required for DDR. In particular, critical genes involved in the base excision repair (BER) pathway and DSBs repair were downregulated, suggesting a potential impairment of the cell's ability to repair oxidative DNA damage.

Conclusions: This study highlights the sublethal effects of nanoplastics on intestinal barrier cells. It underscores the possible risks of exposure to these environmental contaminants, which can lead to genome instability and other long-term health consequences.

聚苯乙烯纳米颗粒暴露导致Caco-2细胞DNA修复机制功能障碍。
背景:最近的研究强调了环境暴露于纳米塑料对健康的重要影响,特别是它们对人体胃肠道细胞的影响。在这项研究中,我们使用人类结直肠癌(Caco-2)细胞来研究聚苯乙烯纳米颗粒(PNPs)暴露于细胞过程和DNA修复。方法:我们将Caco-2细胞暴露于不同浓度的PNPs中,监测细胞毒性、ROS水平、parp -1依赖性凋亡、DNA损伤和DNA损伤反应(DDR)基因表达的变化。结果:彗星实验和γ - h2ax染色结果表明,PNPs虽然不会直接引起SSBs或DSBs,但它们会诱导氧化应激,并显著改变DDR所需基因的表达。特别是,参与碱基切除修复(BER)途径和dsb修复的关键基因被下调,表明细胞修复氧化DNA损伤的能力可能受损。结论:本研究强调了纳米塑料对肠屏障细胞的亚致死作用。它强调了接触这些环境污染物的可能风险,这可能导致基因组不稳定和其他长期健康后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信