Haleigh C Wooters, Neil C Nimmagadda, Alicia M Darnell, Gustavo M Silva
{"title":"The ribosome ubiquitination code: fine-tuning translation under stress.","authors":"Haleigh C Wooters, Neil C Nimmagadda, Alicia M Darnell, Gustavo M Silva","doi":"10.1016/j.tibs.2025.06.009","DOIUrl":null,"url":null,"abstract":"<p><p>It has become evident that a complex code of ribosome ubiquitination regulates protein synthesis, particularly in stress conditions. Ubiquitin is known largely for its role in protein stability; however, new high-throughput screening and advances in proteomics are underscoring its novel role as a master regulator of ribosome function. Still, much remains to be discovered about how this code acts and supports translation reprogramming in a context-specific manner. Here we discuss the nature of this code, the dynamics of site-specific ribosome ubiquitination, and the unique roles that multiple enzymes play in defining the translatome and cotranslational quality control pathways. We also provide insights on the importance of unraveling this code to understand the physiological impact of modified ribosome subpopulations in cellular stress and human disease.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.06.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It has become evident that a complex code of ribosome ubiquitination regulates protein synthesis, particularly in stress conditions. Ubiquitin is known largely for its role in protein stability; however, new high-throughput screening and advances in proteomics are underscoring its novel role as a master regulator of ribosome function. Still, much remains to be discovered about how this code acts and supports translation reprogramming in a context-specific manner. Here we discuss the nature of this code, the dynamics of site-specific ribosome ubiquitination, and the unique roles that multiple enzymes play in defining the translatome and cotranslational quality control pathways. We also provide insights on the importance of unraveling this code to understand the physiological impact of modified ribosome subpopulations in cellular stress and human disease.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.