Multifunctional Chiral Halide Perovskites: Advancing Chiro-Optics, Chiro-Optoelectronics, and Spintronics.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Advanced Science Pub Date : 2025-09-01 Epub Date: 2025-07-12 DOI:10.1002/advs.202509155
Qi Liu, Hui Ren, Qi Wei, Mingjie Li
{"title":"Multifunctional Chiral Halide Perovskites: Advancing Chiro-Optics, Chiro-Optoelectronics, and Spintronics.","authors":"Qi Liu, Hui Ren, Qi Wei, Mingjie Li","doi":"10.1002/advs.202509155","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral halide perovskites (CHPs) represent a revolutionary material class, integrating the exceptional optoelectronic properties of halide perovskites with chirality. This unique combination enables advanced functionalities in chiroptics, spintronics, and next-generation optoelectronics. Recent breakthroughs highlight CHPs' capabilities in circularly polarized light (CPL) emission/detection, spin-selective charge transport, and nonlinear optical processes, establishing them as a focal point in multifunctional material research. This review provides an in-depth, device-centric analysis of the latest CHP technologies. Material design strategies, chirality induction/transfer mechanisms, scalable synthesis methods, and diverse device architectures are explored. Particular emphasis is placed on clarifying structure-property-performance relationships across applications, including CPL photodetectors, light-emitting diodes, lasers, second-harmonic generation devices, spintronic components, and neuromorphic optoelectronics. Additionally, CHPs' potential for cutting-edge applications such as multimodal polarimetry, artificial intelligence, and secure information processing is examined. By defining design guidelines and performance benchmarks, this review aims to bridge the gap between academic research and practical technology translation. It not only synthesizes the current state-of-the-art but also outlines future directions for high-performance CHP devices, driving progress in this rapidly evolving field.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e09155"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202509155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral halide perovskites (CHPs) represent a revolutionary material class, integrating the exceptional optoelectronic properties of halide perovskites with chirality. This unique combination enables advanced functionalities in chiroptics, spintronics, and next-generation optoelectronics. Recent breakthroughs highlight CHPs' capabilities in circularly polarized light (CPL) emission/detection, spin-selective charge transport, and nonlinear optical processes, establishing them as a focal point in multifunctional material research. This review provides an in-depth, device-centric analysis of the latest CHP technologies. Material design strategies, chirality induction/transfer mechanisms, scalable synthesis methods, and diverse device architectures are explored. Particular emphasis is placed on clarifying structure-property-performance relationships across applications, including CPL photodetectors, light-emitting diodes, lasers, second-harmonic generation devices, spintronic components, and neuromorphic optoelectronics. Additionally, CHPs' potential for cutting-edge applications such as multimodal polarimetry, artificial intelligence, and secure information processing is examined. By defining design guidelines and performance benchmarks, this review aims to bridge the gap between academic research and practical technology translation. It not only synthesizes the current state-of-the-art but also outlines future directions for high-performance CHP devices, driving progress in this rapidly evolving field.

多功能手性卤化物钙钛矿:推进chiro光学、chiro光电子学和自旋电子学。
手性卤化物钙钛矿(CHPs)是一种革命性的材料,它将卤化物钙钛矿独特的光电性能与手性结合在一起。这种独特的组合使光学,自旋电子学和下一代光电子学的先进功能成为可能。最近的突破突出了CHPs在圆偏振光(CPL)发射/检测,自旋选择性电荷输运和非线性光学过程中的能力,使其成为多功能材料研究的焦点。这篇综述对最新的热电联产技术进行了深入的、以设备为中心的分析。材料设计策略,手性诱导/转移机制,可扩展的合成方法,和不同的器件架构进行了探讨。特别强调的是澄清结构-性能-性能之间的关系,包括CPL光电探测器,发光二极管,激光器,二次谐波产生设备,自旋电子元件和神经形态光电子学。此外,CHPs在多模态偏振、人工智能和安全信息处理等尖端应用方面的潜力也得到了研究。通过定义设计准则和性能基准,本文旨在弥合学术研究和实际技术翻译之间的差距。它不仅综合了当前最先进的技术,而且概述了高性能热电联产设备的未来方向,推动了这一快速发展领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信