Ming Yuan, Shaopeng Chen, Zhensen Lin, Runfeng Yu, Kang Chao, Shubiao Ye, Qing Li, Haoxian Ke, Chi Zhang, Junfeng Huang, Guanzhan Liang, Tuo Hu, Xiang Gao, Ping Lan, Xianrui Wu
{"title":"ACSS2-Mediated Histone H4 Lysine 12 Crotonylation (H4K12cr) Alleviates Colitis via Enhancing Transcription of CLDN7.","authors":"Ming Yuan, Shaopeng Chen, Zhensen Lin, Runfeng Yu, Kang Chao, Shubiao Ye, Qing Li, Haoxian Ke, Chi Zhang, Junfeng Huang, Guanzhan Liang, Tuo Hu, Xiang Gao, Ping Lan, Xianrui Wu","doi":"10.1002/advs.202500461","DOIUrl":null,"url":null,"abstract":"<p><p>Histone lysine crotonylation (Kcr), a highly conserved posttranslational modification, plays critical roles in various biological processes. Nevertheless, the dynamic alterations and functions of histone Kcr in inflammatory bowel disease (IBD) remain poorly explored. Herein, a notable decrease of both Pan-Kcr and ACSS2 (acyl-CoA synthetase short-chain family member 2), the key enzyme for crotonyl-CoA generation, is revealed in inflamed intestinal epithelial cells. Genetic or pharmacological inhibition of ACSS2 dramatically impairs mouse intestinal barrier integrity and exacerbates colitis. Mechanistically, ACSS2-mediated histone H4 lysine 12 crotonylation (H4K12cr) upregulates CLDN7 expression to fortify intestinal epithelial barrier, which can be augmented by crotonate supplementation. Furthermore, tumor necrosis factor-α (TNF-α) is revealed to enhance the m6A modification of ACSS2 mRNA, consequently destabilizing and downregulating ACSS2. Combinational therapy involving anti-TNF-α and crotonate can significantly ameliorate colitis. Overall, ACSS2-mediated H4K12cr emerges as a pivotal modulator governing intestinal barrier function during IBD progression.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e00461"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone lysine crotonylation (Kcr), a highly conserved posttranslational modification, plays critical roles in various biological processes. Nevertheless, the dynamic alterations and functions of histone Kcr in inflammatory bowel disease (IBD) remain poorly explored. Herein, a notable decrease of both Pan-Kcr and ACSS2 (acyl-CoA synthetase short-chain family member 2), the key enzyme for crotonyl-CoA generation, is revealed in inflamed intestinal epithelial cells. Genetic or pharmacological inhibition of ACSS2 dramatically impairs mouse intestinal barrier integrity and exacerbates colitis. Mechanistically, ACSS2-mediated histone H4 lysine 12 crotonylation (H4K12cr) upregulates CLDN7 expression to fortify intestinal epithelial barrier, which can be augmented by crotonate supplementation. Furthermore, tumor necrosis factor-α (TNF-α) is revealed to enhance the m6A modification of ACSS2 mRNA, consequently destabilizing and downregulating ACSS2. Combinational therapy involving anti-TNF-α and crotonate can significantly ameliorate colitis. Overall, ACSS2-mediated H4K12cr emerges as a pivotal modulator governing intestinal barrier function during IBD progression.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.