{"title":"A Broadband Circularly Polarized Antenna Using Transmissive Polarization Conversion Metasurface","authors":"Peng Wang, Hongwei Yuan, Xin Qu, Minquan Li, Yihong Qi, Zufeng Zhang, Yongkang Yuan, Fangcheng Huang","doi":"10.1002/mop.70296","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of modern wireless communication technology, antennas, as a core component of the wireless communication system, have become a research focus. The axial ratio (AR) of an antenna is particularly critical to its overall performance. Increasing AR bandwidth can ensure circular polarization performance, enhance system compatibility, and improve anti-interference capabilities. This paper presents a design of a circularly polarized patch antenna based on metasurface technology. By incorporating a transmission-type polarization conversion metasurface, copper plates embedded vertically in the ground plane, and n-shaped parasitic patches, significant improvements in antenna performance are achieved. The tests show that the antenna achieves a 43.4% <i>S</i><sub>11</sub> bandwidth within the frequency range of 4.94–7.68 GHz, and a 31.4% 3 dB AR bandwidth within the range of 4.83–6.43 GHz, demonstrating excellent performance. This study provides new technical support and design ideas for the field of wireless communication.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of modern wireless communication technology, antennas, as a core component of the wireless communication system, have become a research focus. The axial ratio (AR) of an antenna is particularly critical to its overall performance. Increasing AR bandwidth can ensure circular polarization performance, enhance system compatibility, and improve anti-interference capabilities. This paper presents a design of a circularly polarized patch antenna based on metasurface technology. By incorporating a transmission-type polarization conversion metasurface, copper plates embedded vertically in the ground plane, and n-shaped parasitic patches, significant improvements in antenna performance are achieved. The tests show that the antenna achieves a 43.4% S11 bandwidth within the frequency range of 4.94–7.68 GHz, and a 31.4% 3 dB AR bandwidth within the range of 4.83–6.43 GHz, demonstrating excellent performance. This study provides new technical support and design ideas for the field of wireless communication.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication