Ilona Mihalik, Mathieu Bourbonnais, William Housty, Kevin Starr, Paul Paquet, Chris Darimont
{"title":"Modeling Functional Connectivity for Bears Among Spawning Salmon Waterways in Haíɫzaqv (Heiltsuk) Territory, Coastal British Columbia","authors":"Ilona Mihalik, Mathieu Bourbonnais, William Housty, Kevin Starr, Paul Paquet, Chris Darimont","doi":"10.1002/ece3.71579","DOIUrl":null,"url":null,"abstract":"<p>Understanding how functional connectivity can provide mobile consumers access to key resources can inform habitat management. The spatial arrangement of landscape features, for example, can affect movement among resource patches. Guided by the Haíɫzaqv (Heiltsuk) Integrated Resource Management Department (HIRMD), and within Haíɫzaqv Territory, coastal British Columbia (BC), Canada, our objectives were to (1) estimate functional connectivity for grizzly and black bears (<i>Ursus arctos</i> and <i>U. americanus</i>, respectively) among aggregations of spawning Pacific salmon (<i>Oncorhynchus</i> spp.), (2) identify important movement pathways for landscape planning, and (3) contribute to the growing body of functional connectivity research on dynamic ecological systems. Using circuit theory and least cost paths, we predicted movement among salmon spawning reaches within a 5618 km<sup>2</sup> study area. Variables affecting bear movement were parameterized by drawing on the relevant literature and Haíɫzaqv Knowledge. We validated our cumulative resistance surface with observed movements as identified via genetic recapture data. Modeled current from Circuitscape suggested areas of high connectivity between salmon spawns within and among watersheds. Our least cost paths model identified principal routes, which we then ranked to illustrate possible corridors for consideration by HIRMD planners. Understanding movement among salmon spawns, a fitness-related food, provides key information to inform landscape planning for bears. Further, our work provides an example of connectivity research codeveloped, executed, and applied with an Indigenous government.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71579","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71579","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how functional connectivity can provide mobile consumers access to key resources can inform habitat management. The spatial arrangement of landscape features, for example, can affect movement among resource patches. Guided by the Haíɫzaqv (Heiltsuk) Integrated Resource Management Department (HIRMD), and within Haíɫzaqv Territory, coastal British Columbia (BC), Canada, our objectives were to (1) estimate functional connectivity for grizzly and black bears (Ursus arctos and U. americanus, respectively) among aggregations of spawning Pacific salmon (Oncorhynchus spp.), (2) identify important movement pathways for landscape planning, and (3) contribute to the growing body of functional connectivity research on dynamic ecological systems. Using circuit theory and least cost paths, we predicted movement among salmon spawning reaches within a 5618 km2 study area. Variables affecting bear movement were parameterized by drawing on the relevant literature and Haíɫzaqv Knowledge. We validated our cumulative resistance surface with observed movements as identified via genetic recapture data. Modeled current from Circuitscape suggested areas of high connectivity between salmon spawns within and among watersheds. Our least cost paths model identified principal routes, which we then ranked to illustrate possible corridors for consideration by HIRMD planners. Understanding movement among salmon spawns, a fitness-related food, provides key information to inform landscape planning for bears. Further, our work provides an example of connectivity research codeveloped, executed, and applied with an Indigenous government.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.