Abu Saleh Ahmed, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md. Shaharul Islam, Md. Saiful Islam, Masuk Abdullah
{"title":"Microalgae to Biofuel: Cutting-Edge Harvesting and Extraction Methods for Sustainable Energy Solution","authors":"Abu Saleh Ahmed, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md. Shaharul Islam, Md. Saiful Islam, Masuk Abdullah","doi":"10.1002/ese3.70111","DOIUrl":null,"url":null,"abstract":"<p>The increasing price and demand for fossil fuels are driven by their depletion, greenhouse gas emissions, and industrial air pollution. As a result, the search for renewable alternatives has gained serious attention. Microalgae provide a sustainable alternative for biofuel production, offering high growth rates, significant oil yields and productivity, nontoxic nature, higher photosynthesis efficiencies, and the ability to thrive on nonarable land. <i>Chlorella vulgaris</i> and <i>Scenedesmus dimorphus</i> strains were chosen for this study to develop effective harvesting and oil extraction methods for sustainable energy. Three types of harvesting methods are used to optimize slurry yields, viz. flocculation, high-speed refrigerated centrifugation, and microfiltration. Moreover, two oil extraction methods were considered to enhance efficiency: Soxhlet extraction and the direct boiling method. The centrifugation method provides the fastest harvesting rate and highest slurry yields, followed by membrane separation, while flocculation, though slower, is more cost-effective and easier to perform. The direct boiling method optimizes the oil extraction process by effectively rupturing microalgae cell walls. <i>Chlorella vulgaris</i> shows a slurry recovery efficiency of 0.76 g per liter of media by centrifuge, consisting of 12%–40% oil content in overall weight; 12.7% of the oil was extracted using Soxhlet extraction, and 18.7% was extracted using the direct boiling method. On the other hand, <i>Scenedesmus dimorphus</i> shows better slurry recovery efficiency of 0.81 g per liter media by centrifuge, consisting of 22%–51% oil content in overall weight, and there is 23.8% oil extracted by using soxhlet extraction and 26.4% for every 10 g of the sample by direct boiling method compared to <i>Chlorella vulgaris</i>. Future research should focus on cost-effective harvesting and oil extraction methods for microalgae like <i>Chlorella vulgaris</i> and <i>Scenedesmus dimorphus</i> to reduce production costs, maximize biofuel yields, and tackle the global energy crisis.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 7","pages":"3525-3540"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70111","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70111","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing price and demand for fossil fuels are driven by their depletion, greenhouse gas emissions, and industrial air pollution. As a result, the search for renewable alternatives has gained serious attention. Microalgae provide a sustainable alternative for biofuel production, offering high growth rates, significant oil yields and productivity, nontoxic nature, higher photosynthesis efficiencies, and the ability to thrive on nonarable land. Chlorella vulgaris and Scenedesmus dimorphus strains were chosen for this study to develop effective harvesting and oil extraction methods for sustainable energy. Three types of harvesting methods are used to optimize slurry yields, viz. flocculation, high-speed refrigerated centrifugation, and microfiltration. Moreover, two oil extraction methods were considered to enhance efficiency: Soxhlet extraction and the direct boiling method. The centrifugation method provides the fastest harvesting rate and highest slurry yields, followed by membrane separation, while flocculation, though slower, is more cost-effective and easier to perform. The direct boiling method optimizes the oil extraction process by effectively rupturing microalgae cell walls. Chlorella vulgaris shows a slurry recovery efficiency of 0.76 g per liter of media by centrifuge, consisting of 12%–40% oil content in overall weight; 12.7% of the oil was extracted using Soxhlet extraction, and 18.7% was extracted using the direct boiling method. On the other hand, Scenedesmus dimorphus shows better slurry recovery efficiency of 0.81 g per liter media by centrifuge, consisting of 22%–51% oil content in overall weight, and there is 23.8% oil extracted by using soxhlet extraction and 26.4% for every 10 g of the sample by direct boiling method compared to Chlorella vulgaris. Future research should focus on cost-effective harvesting and oil extraction methods for microalgae like Chlorella vulgaris and Scenedesmus dimorphus to reduce production costs, maximize biofuel yields, and tackle the global energy crisis.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.