Cross-scale feature fusion with gradient-enhanced attention for accurate prediction of film cooling

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hongyu Gao, Yuying Liu, Yutian Wang, Yinuo Liu, Renjie Xu
{"title":"Cross-scale feature fusion with gradient-enhanced attention for accurate prediction of film cooling","authors":"Hongyu Gao,&nbsp;Yuying Liu,&nbsp;Yutian Wang,&nbsp;Yinuo Liu,&nbsp;Renjie Xu","doi":"10.1016/j.ijthermalsci.2025.110147","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of film cooling effectiveness is critical for optimizing gas turbine blade durability under extreme thermal conditions. This study proposes a novel deep learning framework integrating a gradient-enhanced attention mechanism with U-Net architecture to establish an end-to-end mapping from four key parameters (injection angle <span><math><mrow><mi>α</mi></mrow></math></span>, lateral expansion angle <span><math><mrow><mi>β</mi></mrow></math></span>, forward expansion angle <span><math><mrow><mi>γ</mi></mrow></math></span>, and blowing ratio <span><math><mrow><mi>M</mi></mrow></math></span>) to two-dimensional cooling effectiveness distributions. The UCGA model employs cross-scale feature fusion through adaptive pooling and a Sobel operator-based gradient attention module to enhance edge perception in flow field reconstruction. The model is based on 125 Computational Fluid Dynamics numerical simulations covering different geometrical parameter configurations. The validation demonstrates exceptional prediction accuracy (Coefficient of Determination (R<sup>2</sup>) &gt; 0.99, Structural Similarity Index Measure (SSIM) &gt; 0.97). SHapley Additive exPlanations (SHAP) analysis shows that <span><math><mrow><mi>β</mi></mrow></math></span> and <span><math><mrow><mi>M</mi></mrow></math></span> are the dominant parameters, with <span><math><mrow><mi>α</mi></mrow></math></span> and <span><math><mrow><mi>γ</mi></mrow></math></span> having a relatively small average effect on model predictions. This is consistent with the physical mechanisms controlling coolant coverage and momentum balance. This work provides valuable insights into the film cooling effectiveness distribution. Most importantly, the developed UCGA model is a very promising tool for fast, high-fidelity iterative optimization of the geometric parameters of the fan-shaped holes, with the aim of providing a reference for accelerating the design cycle.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"218 ","pages":"Article 110147"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925004703","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of film cooling effectiveness is critical for optimizing gas turbine blade durability under extreme thermal conditions. This study proposes a novel deep learning framework integrating a gradient-enhanced attention mechanism with U-Net architecture to establish an end-to-end mapping from four key parameters (injection angle α, lateral expansion angle β, forward expansion angle γ, and blowing ratio M) to two-dimensional cooling effectiveness distributions. The UCGA model employs cross-scale feature fusion through adaptive pooling and a Sobel operator-based gradient attention module to enhance edge perception in flow field reconstruction. The model is based on 125 Computational Fluid Dynamics numerical simulations covering different geometrical parameter configurations. The validation demonstrates exceptional prediction accuracy (Coefficient of Determination (R2) > 0.99, Structural Similarity Index Measure (SSIM) > 0.97). SHapley Additive exPlanations (SHAP) analysis shows that β and M are the dominant parameters, with α and γ having a relatively small average effect on model predictions. This is consistent with the physical mechanisms controlling coolant coverage and momentum balance. This work provides valuable insights into the film cooling effectiveness distribution. Most importantly, the developed UCGA model is a very promising tool for fast, high-fidelity iterative optimization of the geometric parameters of the fan-shaped holes, with the aim of providing a reference for accelerating the design cycle.
跨尺度特征融合与梯度增强的关注,以准确预测膜冷却
准确预测气膜冷却效率对于优化燃气轮机叶片在极端热条件下的耐久性至关重要。本研究提出了一种新的深度学习框架,将梯度增强的注意力机制与U-Net架构相结合,建立了四个关键参数(注入角α、侧向膨胀角β、正向膨胀角γ和吹气比M)到二维冷却效率分布的端到端映射。UCGA模型采用自适应池化跨尺度特征融合和基于Sobel算子的梯度关注模块增强流场重构中的边缘感知。该模型基于涵盖不同几何参数配置的125个计算流体动力学数值模拟。验证结果表明,该方法具有较好的预测精度(决定系数R2 >;0.99,结构相似指数测度(SSIM) >;0.97)。SHapley加性解释(SHAP)分析表明,β和M是主要参数,α和γ对模型预测的平均影响相对较小。这与控制冷却剂覆盖和动量平衡的物理机制是一致的。这项工作提供了有价值的见解膜冷却效率分布。最重要的是,所开发的UCGA模型是一种非常有前途的工具,可以快速、高保真地迭代优化扇形孔的几何参数,旨在为加快设计周期提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信