An immersed interface method for nonlinear convection–diffusion equations with interfaces

Q1 Mathematics
Miguel Uh Zapata , Reymundo Itza Balam , Silvia Jerez
{"title":"An immersed interface method for nonlinear convection–diffusion equations with interfaces","authors":"Miguel Uh Zapata ,&nbsp;Reymundo Itza Balam ,&nbsp;Silvia Jerez","doi":"10.1016/j.padiff.2025.101250","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides an initial framework for developing high-order numerical methods to solve interface problems for nonlinear elliptic partial differential equations. The proposed formulation is based on the immersed interface method dealing with a discontinuous coefficient problem. The algorithm introduces new schemes for points near the interface, whereas standard central finite difference schemes are used in smooth regions. As a consequence, a global second-order accurate solution is guaranteed. First, theoretical results on the truncation error are given for one-dimensional linear problems. Next, the algorithm is generalized to deal with nonlinear convection and diffusion cases using the using Levenberg–Marquardt algorithm. Numerical simulations for several benchmark problems show the robustness and efficiency of the proposed scheme.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101250"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides an initial framework for developing high-order numerical methods to solve interface problems for nonlinear elliptic partial differential equations. The proposed formulation is based on the immersed interface method dealing with a discontinuous coefficient problem. The algorithm introduces new schemes for points near the interface, whereas standard central finite difference schemes are used in smooth regions. As a consequence, a global second-order accurate solution is guaranteed. First, theoretical results on the truncation error are given for one-dimensional linear problems. Next, the algorithm is generalized to deal with nonlinear convection and diffusion cases using the using Levenberg–Marquardt algorithm. Numerical simulations for several benchmark problems show the robustness and efficiency of the proposed scheme.
具有界面的非线性对流扩散方程的浸入界面法
本文为发展求解非线性椭圆型偏微分方程界面问题的高阶数值方法提供了一个初步框架。该公式基于处理不连续系数问题的浸入界面法。该算法对界面附近的点引入了新的格式,而在光滑区域则采用标准的中心有限差分格式。因此,保证了全局二阶精确解。首先,对一维线性问题给出了截断误差的理论结果。然后,利用Levenberg-Marquardt算法将该算法推广到处理非线性对流和扩散情况。若干基准问题的数值仿真结果表明了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信