ABERT: Adapting BERT model for efficient detection of human and AI-generated fake news

Jawaher Alghamdi , Yuqing Lin , Suhuai Luo
{"title":"ABERT: Adapting BERT model for efficient detection of human and AI-generated fake news","authors":"Jawaher Alghamdi ,&nbsp;Yuqing Lin ,&nbsp;Suhuai Luo","doi":"10.1016/j.jjimei.2025.100353","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of fake news in digital media poses a significant challenge to the dissemination of accurate information. Transfer learning, particularly with pre-trained language models (PLMs) like BERT, has demonstrated exceptional performance in natural language processing (NLP) tasks. However, the computational expense of fine-tuning the entire model for domain-specific tasks remains a limitation. In this study, we propose a novel approach, Adapt-BERT (ABERT), for the detection of both human and artificial intelligence (AI)-generated fake news. ABERT includes parameter-efficient adapter that enables efficient detection. By freezing the pre-trained BERT network and incorporating lightweight adapter, ABERT achieves comparable performance to fully fine-tuned BERT while reducing the number of trainable parameters by approximately 67.7%. ABERT strikes a balance between performance and computational efficiency, offering a scalable solution to combat the dissemination of fake news in digital media. Experimental evaluations on diverse datasets showcase the effectiveness of the proposed parameter-efficient approach in achieving comparable performance to state-of-the-art (SOTA) methods in the task of fake news detection (FND).</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 2","pages":"Article 100353"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of fake news in digital media poses a significant challenge to the dissemination of accurate information. Transfer learning, particularly with pre-trained language models (PLMs) like BERT, has demonstrated exceptional performance in natural language processing (NLP) tasks. However, the computational expense of fine-tuning the entire model for domain-specific tasks remains a limitation. In this study, we propose a novel approach, Adapt-BERT (ABERT), for the detection of both human and artificial intelligence (AI)-generated fake news. ABERT includes parameter-efficient adapter that enables efficient detection. By freezing the pre-trained BERT network and incorporating lightweight adapter, ABERT achieves comparable performance to fully fine-tuned BERT while reducing the number of trainable parameters by approximately 67.7%. ABERT strikes a balance between performance and computational efficiency, offering a scalable solution to combat the dissemination of fake news in digital media. Experimental evaluations on diverse datasets showcase the effectiveness of the proposed parameter-efficient approach in achieving comparable performance to state-of-the-art (SOTA) methods in the task of fake news detection (FND).
BERT:采用BERT模型有效检测人工和人工智能生成的假新闻
数字媒体中假新闻的泛滥对准确信息的传播构成了重大挑战。迁移学习,特别是像BERT这样的预训练语言模型(plm),在自然语言处理(NLP)任务中表现出色。然而,为特定领域的任务微调整个模型的计算费用仍然是一个限制。在这项研究中,我们提出了一种新的方法,适应bert (ABERT),用于检测人类和人工智能(AI)生成的假新闻。ABERT包括参数高效适配器,可实现高效检测。通过冻结预训练的BERT网络并结合轻量级适配器,ABERT达到了与完全微调的BERT相当的性能,同时将可训练参数的数量减少了约67.7%。ABERT在性能和计算效率之间取得了平衡,为打击数字媒体中假新闻的传播提供了可扩展的解决方案。对不同数据集的实验评估显示了所提出的参数高效方法在假新闻检测(FND)任务中实现与最先进(SOTA)方法相当的性能的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信