{"title":"Individual muscle contributions to lower-limb joint quasi-stiffness during steady-state healthy walking","authors":"Stephanie L. Molitor, Richard R. Neptune","doi":"10.1016/j.jbiomech.2025.112851","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining appropriate lower-limb joint stiffness is critical for walking performance, as it facilitates tasks such as absorbing impact loading, maintaining balance, and providing body support and propulsion. Quasi-stiffness, an indirect measure describing the joint moment–angle relationship, is often used to assess joint stiffness during walking as it accounts for passive soft tissue stiffness and active muscle force generation. Thus, identifying the primary muscle contributors to joint moments and angles can elucidate how muscles are coordinated to maintain quasi-stiffness. However, determining individual muscle contributions experimentally is challenging. Therefore, the objective of this study was to use musculoskeletal modeling and simulation to identify individual muscle contributions to sagittal-plane quasi-stiffness during walking. Simulations of 15 healthy young adults were developed and individual muscle contributions to joint moments and angles were determined within discrete phases of the gait cycle. As expected, contributors to ankle, knee and hip moments were the primary dorsiflexors/plantarflexors, knee flexors/extensors, and hip flexors/extensors, respectively, as these muscles cross the joint and directly contribute to their respective joint moments. However, major contributors to the joint angles also included distant and contralateral muscles. Specifically, the hip extensors and ankle dorsiflexors were found to contribute to the knee angle (8.4–19.7% and 9.0–17.1% of total muscle contributions, respectively), while contralateral hip extensors were found to contribute (16.6–27.2%) to the hip angle. These results highlight the role of distant muscles in maintaining quasi-stiffness, and provide a foundation for developing rehabilitation strategies and assistive devices to target stiffness impairments in clinical populations.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"190 ","pages":"Article 112851"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002192902500363X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining appropriate lower-limb joint stiffness is critical for walking performance, as it facilitates tasks such as absorbing impact loading, maintaining balance, and providing body support and propulsion. Quasi-stiffness, an indirect measure describing the joint moment–angle relationship, is often used to assess joint stiffness during walking as it accounts for passive soft tissue stiffness and active muscle force generation. Thus, identifying the primary muscle contributors to joint moments and angles can elucidate how muscles are coordinated to maintain quasi-stiffness. However, determining individual muscle contributions experimentally is challenging. Therefore, the objective of this study was to use musculoskeletal modeling and simulation to identify individual muscle contributions to sagittal-plane quasi-stiffness during walking. Simulations of 15 healthy young adults were developed and individual muscle contributions to joint moments and angles were determined within discrete phases of the gait cycle. As expected, contributors to ankle, knee and hip moments were the primary dorsiflexors/plantarflexors, knee flexors/extensors, and hip flexors/extensors, respectively, as these muscles cross the joint and directly contribute to their respective joint moments. However, major contributors to the joint angles also included distant and contralateral muscles. Specifically, the hip extensors and ankle dorsiflexors were found to contribute to the knee angle (8.4–19.7% and 9.0–17.1% of total muscle contributions, respectively), while contralateral hip extensors were found to contribute (16.6–27.2%) to the hip angle. These results highlight the role of distant muscles in maintaining quasi-stiffness, and provide a foundation for developing rehabilitation strategies and assistive devices to target stiffness impairments in clinical populations.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.