Qian Ren, Dali Wang, Xiaolei Song, Shuai Zhang, Qiwei Tian*, Tao Wu* and Weidong Le*,
{"title":"Bionic Janus Fiber Enabling Autonomous Exudate Management and Multimodal Sterilization for Diabetic Wounds","authors":"Qian Ren, Dali Wang, Xiaolei Song, Shuai Zhang, Qiwei Tian*, Tao Wu* and Weidong Le*, ","doi":"10.1021/acsami.5c10274","DOIUrl":null,"url":null,"abstract":"<p >Diabetic wound healing remains a persistent clinical challenge where exudate management and targeted disinfection constitute critical therapeutic priorities. Drawing inspiration from nature’s asymmetric wettability in Janus-structured lotus leaves, we engineered a biomimetic wound dressing system that synergistically integrates directional biofluid transport and photothermal/photodynamic sterilization. The hierarchically structured PP/PAN-<i>x</i>Cu-TCPP fiber dressing combines a hydrophobic polypropylene (PP) substrate with an electrospun polyacrylonitrile (PAN) nanofibrous matrix incorporating copper-porphyrin metal–organic frameworks (Cu-TCPP MOFs). This Janus architecture orchestrates unidirectional fluid dynamics <i>via</i> surface tension and contact angle differentials from the hydrophobic to the hydrophilic layer, effectively preventing exudate accumulation while maintaining physiologically moist microenvironments. The PP/PAN-20%Cu-TCPP fiber dressing confers spatiotemporal therapeutic control under near-infrared (NIR) irradiation, generating reactive oxygen species (ROS) and photothermal bactericidal effects. In <i>Staphylococcus aureus</i>-infected diabetic mice models, the dual-laser activated PP/PAN-20%Cu-TCPP system demonstrates excellent microbial eradication, immunomodulation by suppressing hyperinflammation and directing macrophage polarization toward regenerative M2 phenotypes, and angiogenic potentiation <i>via</i> dual phototherapeutic activation of endothelial cells and stromal remodeling. This multifunctional paradigm effectively bridges the critical gap between infection control and pro-regenerative microenvironment establishment, thereby accelerating wound repair.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 29","pages":"41825–41837"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10274","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic wound healing remains a persistent clinical challenge where exudate management and targeted disinfection constitute critical therapeutic priorities. Drawing inspiration from nature’s asymmetric wettability in Janus-structured lotus leaves, we engineered a biomimetic wound dressing system that synergistically integrates directional biofluid transport and photothermal/photodynamic sterilization. The hierarchically structured PP/PAN-xCu-TCPP fiber dressing combines a hydrophobic polypropylene (PP) substrate with an electrospun polyacrylonitrile (PAN) nanofibrous matrix incorporating copper-porphyrin metal–organic frameworks (Cu-TCPP MOFs). This Janus architecture orchestrates unidirectional fluid dynamics via surface tension and contact angle differentials from the hydrophobic to the hydrophilic layer, effectively preventing exudate accumulation while maintaining physiologically moist microenvironments. The PP/PAN-20%Cu-TCPP fiber dressing confers spatiotemporal therapeutic control under near-infrared (NIR) irradiation, generating reactive oxygen species (ROS) and photothermal bactericidal effects. In Staphylococcus aureus-infected diabetic mice models, the dual-laser activated PP/PAN-20%Cu-TCPP system demonstrates excellent microbial eradication, immunomodulation by suppressing hyperinflammation and directing macrophage polarization toward regenerative M2 phenotypes, and angiogenic potentiation via dual phototherapeutic activation of endothelial cells and stromal remodeling. This multifunctional paradigm effectively bridges the critical gap between infection control and pro-regenerative microenvironment establishment, thereby accelerating wound repair.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.