Multi-stage strain hardening induced by spinodal decomposition structure in Ni-based superalloy

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yijie Ban, Liang Huang, Zhonghao Li, Yi Zhang, Yuzhen Yin, Jie Pan
{"title":"Multi-stage strain hardening induced by spinodal decomposition structure in Ni-based superalloy","authors":"Yijie Ban, Liang Huang, Zhonghao Li, Yi Zhang, Yuzhen Yin, Jie Pan","doi":"10.1016/j.jmst.2025.06.019","DOIUrl":null,"url":null,"abstract":"Strengthening metallic materials often compromises ductility primarily due to insufficient strain hardening capacity to sustain continuous plastic deformation. In this study, we introduce spinodal decomposition strengthening and bimodal grain structures into a Ni-based superalloy, achieving a remarkable synergy of strength and ductility. The alloy demonstrates a high yield strength of 1120 MPa, an ultimate tensile strength of 1548 MPa, and a uniform elongation of 26.2 %. Notably, this alloy undergoes a multi-stage strain hardening process: the spinodal structure initially enhances dislocation resistance and subsequently facilitates dislocation accumulation and interaction with stacking faults, extending plastic deformation. Our findings underscore the pivotal role of the spinodal decomposition structure in enabling multi-stage strain hardening, phenomenon rarely observed in Ni-based superalloys, offering valuable insights into the strain hardening mechanisms and offering a promising pathway for optimizing the performance of high-strength alloys through spinodal structures.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"36 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.06.019","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strengthening metallic materials often compromises ductility primarily due to insufficient strain hardening capacity to sustain continuous plastic deformation. In this study, we introduce spinodal decomposition strengthening and bimodal grain structures into a Ni-based superalloy, achieving a remarkable synergy of strength and ductility. The alloy demonstrates a high yield strength of 1120 MPa, an ultimate tensile strength of 1548 MPa, and a uniform elongation of 26.2 %. Notably, this alloy undergoes a multi-stage strain hardening process: the spinodal structure initially enhances dislocation resistance and subsequently facilitates dislocation accumulation and interaction with stacking faults, extending plastic deformation. Our findings underscore the pivotal role of the spinodal decomposition structure in enabling multi-stage strain hardening, phenomenon rarely observed in Ni-based superalloys, offering valuable insights into the strain hardening mechanisms and offering a promising pathway for optimizing the performance of high-strength alloys through spinodal structures.

Abstract Image

ni基高温合金中spinodal分解组织诱导的多阶段应变硬化
金属材料的强化通常会损害其延性,主要原因是其应变硬化能力不足以维持连续的塑性变形。在本研究中,我们在镍基高温合金中引入了独立分解强化和双峰晶粒结构,实现了强度和延展性的显著协同。该合金的屈服强度为1120 MPa,抗拉强度为1548 MPa,均匀伸长率为26.2%。值得注意的是,该合金经历了一个多阶段的应变硬化过程:spinodal组织最初增强了位错抗力,随后促进了位错积累和与层错的相互作用,延长了塑性变形。我们的发现强调了spinodal分解结构在实现多阶段应变硬化中的关键作用,这种现象在ni基高温合金中很少观察到,为应变硬化机制提供了有价值的见解,并为通过spinodal结构优化高强度合金的性能提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信