Tifex-Py: Time-Series Feature Extraction for Python in a Human Activity Recognition Scenario.

Mehdi Ejtehadi, Gloria Edumaba Graham, Cailin Ringstrom, Elisa Du, Robert Riener, Diego Paez-Granados
{"title":"Tifex-Py: Time-Series Feature Extraction for Python in a Human Activity Recognition Scenario.","authors":"Mehdi Ejtehadi, Gloria Edumaba Graham, Cailin Ringstrom, Elisa Du, Robert Riener, Diego Paez-Granados","doi":"10.1109/ICORR66766.2025.11062978","DOIUrl":null,"url":null,"abstract":"<p><p>Human Activity Recognition (HAR) is a valuable tool for healthcare and rehabilitation, enabling applications like remote patient monitoring and rehabilitation progress assessment. This paper introduces TIFEX-Py, a comprehensive Python toolbox designed for time series feature extraction in HAR. TIFEX-Py offers a rich set of 195 feature extraction methods across statistical, amplitude, spectral, and time-frequency domains. To evaluate its effectiveness, TIFEX-Py was applied to 11 publicly available HAR datasets: DSADS, HHAR, MHEALTH, MotionSense, PAMAP2, REALDISP, RealWorld, UniMiBSHAR, USC-HAD, WARD, and WISDM. Machine learning pipelines utilizing TIFEX-Py features, evaluated under both random and subject-stratified cross-validation settings, consistently achieved performance that is competitive with or superior to state-of-theart (SOTA) benchmark performances available for the datasets. In 11 out of 11 random split cross-validation scenarios, our pipeline surpassed or matched SOTA performance. For stratified by subject cross-validation, this was the case for more than half of the datasets. These results highlight the power of TIFEX-Py's feature space in representing time series data. TIFEX-Py is opensource and publicly available for researchers in rehabilitation and movement analysis fields.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2025 ","pages":"1332-1339"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR66766.2025.11062978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Activity Recognition (HAR) is a valuable tool for healthcare and rehabilitation, enabling applications like remote patient monitoring and rehabilitation progress assessment. This paper introduces TIFEX-Py, a comprehensive Python toolbox designed for time series feature extraction in HAR. TIFEX-Py offers a rich set of 195 feature extraction methods across statistical, amplitude, spectral, and time-frequency domains. To evaluate its effectiveness, TIFEX-Py was applied to 11 publicly available HAR datasets: DSADS, HHAR, MHEALTH, MotionSense, PAMAP2, REALDISP, RealWorld, UniMiBSHAR, USC-HAD, WARD, and WISDM. Machine learning pipelines utilizing TIFEX-Py features, evaluated under both random and subject-stratified cross-validation settings, consistently achieved performance that is competitive with or superior to state-of-theart (SOTA) benchmark performances available for the datasets. In 11 out of 11 random split cross-validation scenarios, our pipeline surpassed or matched SOTA performance. For stratified by subject cross-validation, this was the case for more than half of the datasets. These results highlight the power of TIFEX-Py's feature space in representing time series data. TIFEX-Py is opensource and publicly available for researchers in rehabilitation and movement analysis fields.

tifix - py:人类活动识别场景中Python的时间序列特征提取。
人类活动识别(HAR)是医疗保健和康复的宝贵工具,支持远程患者监测和康复进度评估等应用。本文介绍了TIFEX-Py,一个为HAR中时间序列特征提取而设计的综合性Python工具箱。TIFEX-Py提供了一套丰富的195个特征提取方法,跨越统计,幅度,频谱和时频域。为了评估其有效性,TIFEX-Py应用于11个公开可用的HAR数据集:DSADS、HHAR、MHEALTH、MotionSense、PAMAP2、REALDISP、RealWorld、unimibshare、USC-HAD、WARD和WISDM。利用TIFEX-Py特征的机器学习管道,在随机和主题分层交叉验证设置下进行评估,始终达到与数据集可用的最先进(SOTA)基准性能相竞争或优于的性能。在11个随机分割交叉验证场景中的11个中,我们的管道超过或匹配了SOTA的性能。对于按受试者交叉验证分层,超过一半的数据集都是如此。这些结果突出了TIFEX-Py的特征空间在表示时间序列数据方面的强大功能。TIFEX-Py是开源的,对康复和运动分析领域的研究人员开放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信