IdentiARAT: Toward Automated Identification of Individual ARAT Items from Wearable Sensors.

Daniel Homm, Patrick Carqueville, Christian Eichhorn, Thomas Weikert, Thomas Menard, David A Plecher, Chris Awai Easthope
{"title":"IdentiARAT: Toward Automated Identification of Individual ARAT Items from Wearable Sensors.","authors":"Daniel Homm, Patrick Carqueville, Christian Eichhorn, Thomas Weikert, Thomas Menard, David A Plecher, Chris Awai Easthope","doi":"10.1109/ICORR66766.2025.11063056","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential of using wrist-worn inertial sensors to automate the labeling of ARAT (Action Research Arm Test) items. While the ARAT is commonly used to assess upper limb motor function, its limitations include subjectivity and time consumption of clinical staff. By using IMU (Inertial Measurement Unit) sensors and MiniROCKET as a time series classification technique, this investigation aims to classify ARAT items based on sensor recordings. We test common preprocessing strategies to efficiently leverage included information in the data. Afterward, we use the best preprocessing to improve the classification. The dataset includes recordings of 45 participants performing various ARAT items. Results show that MiniROCKET offers a fast and reliable approach for classifying ARAT domains, although challenges remain in distinguishing between individual resembling items. Future work may involve improving classification through more advanced machine-learning models and data enhancements.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2025 ","pages":"842-847"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR66766.2025.11063056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of using wrist-worn inertial sensors to automate the labeling of ARAT (Action Research Arm Test) items. While the ARAT is commonly used to assess upper limb motor function, its limitations include subjectivity and time consumption of clinical staff. By using IMU (Inertial Measurement Unit) sensors and MiniROCKET as a time series classification technique, this investigation aims to classify ARAT items based on sensor recordings. We test common preprocessing strategies to efficiently leverage included information in the data. Afterward, we use the best preprocessing to improve the classification. The dataset includes recordings of 45 participants performing various ARAT items. Results show that MiniROCKET offers a fast and reliable approach for classifying ARAT domains, although challenges remain in distinguishing between individual resembling items. Future work may involve improving classification through more advanced machine-learning models and data enhancements.

IdentiARAT:从可穿戴传感器自动识别单个ARAT项目。
本研究探讨了使用腕带惯性传感器自动标记ARAT(行动研究臂测试)项目的潜力。虽然ARAT通常用于评估上肢运动功能,但其局限性在于主观性和临床人员的时间消耗。本研究利用惯性测量单元(IMU)传感器和MiniROCKET作为时间序列分类技术,基于传感器记录对ARAT项目进行分类。我们测试了常见的预处理策略,以有效地利用数据中包含的信息。然后,我们使用最好的预处理来改进分类。该数据集包括45名参与者执行各种ARAT项目的录音。结果表明,MiniROCKET提供了一种快速可靠的ARAT域分类方法,尽管在区分单个相似项目方面仍然存在挑战。未来的工作可能包括通过更先进的机器学习模型和数据增强来改进分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信