Assessing Repeatability of CLEVERArm Exoskeleton Using Healthy Subjects: A Pilot Study.

Adib H Laskar, Reza Tafreshi, Muhammad Bin Mughees, Khaled Al-Halabi, Reza Langari, Md Ferdous Wahid
{"title":"Assessing Repeatability of CLEVERArm Exoskeleton Using Healthy Subjects: A Pilot Study.","authors":"Adib H Laskar, Reza Tafreshi, Muhammad Bin Mughees, Khaled Al-Halabi, Reza Langari, Md Ferdous Wahid","doi":"10.1109/ICORR66766.2025.11062963","DOIUrl":null,"url":null,"abstract":"<p><p>Upper extremity (UE) impairments resulting from non-communicable diseases continue to rise annually across the globe. Robotic devices offer promising solutions for mitigating the long-term logistical challenges and limited recovery outcomes associated with short-term, one-to-one rehabilitation sessions. This study presents a repeatability analysis of CLEVERArm (compact, lightweight, ergonomic, VR/AR-enhanced rehabilitation arm), an eight-degrees-of-freedom (DOF) robotic exoskeleton for treating patients with UE impairments, focusing on validating both single-DOF (sDOF) and multi-DOF (mDOF) trajectories produced by the device. Eighteen healthy subjects performed tasks ranging from simple to complex UE movements associated with activities of daily living. The device then autonomously repeated the movements made by the participants. Across all tasks, CLEVERArm demonstrated low root mean square deviation (<3.42°), and high correlations (>0.99) between reference and repetition trajectories recorded by absolute encoders. High intra-class coefficient values (>0.9) further constitute the system's consistency and accuracy in UE movement over time. These results suggest that CLEVERArm can reliably replicate input trajectories, providing consistent and positive outcomes in rehabilitation settings. Future work will utilize the device's ability to accurately replicate trajectories for designing personalized rehabilitation regimens, monitoring patient progress, and tailoring exercises to individual needs, ultimately enhancing long-term recovery for patients with UE impairments.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2025 ","pages":"160-165"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR66766.2025.11062963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Upper extremity (UE) impairments resulting from non-communicable diseases continue to rise annually across the globe. Robotic devices offer promising solutions for mitigating the long-term logistical challenges and limited recovery outcomes associated with short-term, one-to-one rehabilitation sessions. This study presents a repeatability analysis of CLEVERArm (compact, lightweight, ergonomic, VR/AR-enhanced rehabilitation arm), an eight-degrees-of-freedom (DOF) robotic exoskeleton for treating patients with UE impairments, focusing on validating both single-DOF (sDOF) and multi-DOF (mDOF) trajectories produced by the device. Eighteen healthy subjects performed tasks ranging from simple to complex UE movements associated with activities of daily living. The device then autonomously repeated the movements made by the participants. Across all tasks, CLEVERArm demonstrated low root mean square deviation (<3.42°), and high correlations (>0.99) between reference and repetition trajectories recorded by absolute encoders. High intra-class coefficient values (>0.9) further constitute the system's consistency and accuracy in UE movement over time. These results suggest that CLEVERArm can reliably replicate input trajectories, providing consistent and positive outcomes in rehabilitation settings. Future work will utilize the device's ability to accurately replicate trajectories for designing personalized rehabilitation regimens, monitoring patient progress, and tailoring exercises to individual needs, ultimately enhancing long-term recovery for patients with UE impairments.

使用健康受试者评估CLEVERArm外骨骼的可重复性:一项试点研究。
在全球范围内,由非传染性疾病造成的上肢损伤继续逐年上升。机器人设备为减轻长期的后勤挑战和短期一对一康复治疗相关的有限恢复结果提供了有希望的解决方案。这项研究展示了CLEVERArm(紧凑、轻便、符合人体工程学、增强VR/ ar的康复臂)的可重复性分析,这是一种用于治疗UE损伤患者的八自由度(DOF)机器人外骨骼,重点验证了该设备产生的单自由度(sDOF)和多自由度(mDOF)轨迹。18名健康受试者执行与日常生活活动相关的从简单到复杂的UE运动任务。然后,该设备会自动重复参与者的动作。在所有任务中,CLEVERArm在绝对编码器记录的参考轨迹和重复轨迹之间表现出较低的均方根偏差(0.99)。高的类内系数值(>0.9)进一步构成了系统在UE移动中的一致性和准确性。这些结果表明,CLEVERArm可以可靠地复制输入轨迹,在康复环境中提供一致和积极的结果。未来的工作将利用该设备精确复制轨迹的能力来设计个性化的康复方案,监测患者的进展,并根据个人需求定制锻炼,最终提高UE损伤患者的长期康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信