Lisanne T Laagland, Deepani W L Poramba Liyanage, Romain Desprat, Frank M Riemers, Corinde C Warmerdam, Mathis Soubeyrand, Paul Bensadoun, Keita Ito, Ollivier Milhavet, Anne Camus, Benjamin Gantenbein, Jean-Marc Lemaitre, Marianna A Tryfonidou
{"title":"Disc-Derived Induced Pluripotent Stem Cells and Environmental Cues for Nucleus Pulposus Regeneration.","authors":"Lisanne T Laagland, Deepani W L Poramba Liyanage, Romain Desprat, Frank M Riemers, Corinde C Warmerdam, Mathis Soubeyrand, Paul Bensadoun, Keita Ito, Ollivier Milhavet, Anne Camus, Benjamin Gantenbein, Jean-Marc Lemaitre, Marianna A Tryfonidou","doi":"10.1177/19373341251359106","DOIUrl":null,"url":null,"abstract":"<p><p>Notochordal cells (NCs), abundantly found in the developing nucleus pulposus (NP), show potential for intervertebral disc regeneration because of their unique instructive and healthy matrix-producing capacity. However, NCs are lost early in life, and attempts at <i>in vitro</i> expansion have failed because they lose their specific phenotype. Therefore, much effort is focused on the generation of cells resembling the properties of healthy matrix-producing NP-like cells from human induced pluripotent stem cells (hiPSCs). They are considered a promising alternative for employing native NCs. Given the ongoing challenges in the field to fine-tune the differentiation protocol and obtain a high yield of mature matrix-producing cells, this study aims to build on the epigenetic memory and instructive capacity of healthy NP tissue. For this, we employed the epigenetic memory of tissue-specific hiPSCs derived from TIE2<sup>+</sup> NP progenitor cells (NPPCs) and microenvironmental cues of decellularized porcine NC-derived matrix (dNCM), consisting of matrix components and bioactive factors to differentiate hiPSC into mature, healthy matrix-producing cells for NP repair. As a comparison, donor-matched minimally invasive peripheral blood mononuclear cell-derived hiPSCs were used. The results show that employing NPPC-derived hiPSCs instructed by natural cues provided by dNCM resulted in an increased expression of healthy phenotypic and matrisome-related NP markers. Furthermore, within this <i>in vitro</i> environment, differentiation of blood-derived hiPSC lines led to augmented differentiation into the hematopoietic and neural cell lineage. In conclusion, we demonstrate that hiPSCs derived from NPPCs achieve enhanced differentiation outcomes in the presence of dNCM, highlighting the potential impact of the epigenetic memory.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251359106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Notochordal cells (NCs), abundantly found in the developing nucleus pulposus (NP), show potential for intervertebral disc regeneration because of their unique instructive and healthy matrix-producing capacity. However, NCs are lost early in life, and attempts at in vitro expansion have failed because they lose their specific phenotype. Therefore, much effort is focused on the generation of cells resembling the properties of healthy matrix-producing NP-like cells from human induced pluripotent stem cells (hiPSCs). They are considered a promising alternative for employing native NCs. Given the ongoing challenges in the field to fine-tune the differentiation protocol and obtain a high yield of mature matrix-producing cells, this study aims to build on the epigenetic memory and instructive capacity of healthy NP tissue. For this, we employed the epigenetic memory of tissue-specific hiPSCs derived from TIE2+ NP progenitor cells (NPPCs) and microenvironmental cues of decellularized porcine NC-derived matrix (dNCM), consisting of matrix components and bioactive factors to differentiate hiPSC into mature, healthy matrix-producing cells for NP repair. As a comparison, donor-matched minimally invasive peripheral blood mononuclear cell-derived hiPSCs were used. The results show that employing NPPC-derived hiPSCs instructed by natural cues provided by dNCM resulted in an increased expression of healthy phenotypic and matrisome-related NP markers. Furthermore, within this in vitro environment, differentiation of blood-derived hiPSC lines led to augmented differentiation into the hematopoietic and neural cell lineage. In conclusion, we demonstrate that hiPSCs derived from NPPCs achieve enhanced differentiation outcomes in the presence of dNCM, highlighting the potential impact of the epigenetic memory.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.