Laura M Zoutendijk, Zenzi Matla, Hanna M Dusza, Barbara M Scholz-Böttcher, Bert M Weckhuysen, Laurens D B Mandemaker, Florian Meirer
{"title":"Development of a Reliable Pre-processing Protocol for Fluorescent Micro- and Nanoplastic Analysis in Human Placental Tissue.","authors":"Laura M Zoutendijk, Zenzi Matla, Hanna M Dusza, Barbara M Scholz-Böttcher, Bert M Weckhuysen, Laurens D B Mandemaker, Florian Meirer","doi":"10.1093/etojnl/vgaf177","DOIUrl":null,"url":null,"abstract":"<p><p>Concerns are arising about potential health risks of micro- and nanoplastics (MNPs) to human life, as their presence has been reported in human blood, stool, liver, lung tissue, breast milk, and placenta. However, little is known about particle numbers and morphology, which is essential information for developing reliable risk assessment. Therefore, such characterization of MNPs in human tissue is an important yet difficult task, which involves sample digestion as an essential step in the pretreatment of organic matrices. Successful digestion enables accurate characterization of MNPs using micro-spectroscopy. In this study, eight different enzymes or enzyme mixtures commonly used in digestion protocols were tested in four different buffers, to select the best combinations of enzymes and buffers for the preprocessing of human placental tissue for MNP (spectro-)microscopic analysis. Placenta tissue was spiked with fluorescent 200 nm, 500 nm, 1 μm, and 10 μm polystyrene MNPs to analyze morphological stability throughout the digestion and to determine recovery rates (RRs). For the optimal protocol, RRs of 98% ±6 (200 nm), 148% ±8 (500 nm), 147% ±8 (1 μm) and 81% ±8 (10 μm) were determined using confocal fluorescence microscopy (CFM). We explain values >100% by dye leaching and hypothesize that the leached dye can bind to organic residue from tissue with a similar size as the FPS particles, causing false positives when counting MNPs. Morphological changes were not observed for the final digestion protocol both with CFM and scanning electron microscopy. Hence, we demonstrate an optimized enzymatic digestion protocol to digest (placental) tissue and report on the accuracy of the characterization of model MNPs using micro-spectroscopy, which will enable further research with an emphasis on sub-micron (<1µm) sized plastic particles.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgaf177","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Concerns are arising about potential health risks of micro- and nanoplastics (MNPs) to human life, as their presence has been reported in human blood, stool, liver, lung tissue, breast milk, and placenta. However, little is known about particle numbers and morphology, which is essential information for developing reliable risk assessment. Therefore, such characterization of MNPs in human tissue is an important yet difficult task, which involves sample digestion as an essential step in the pretreatment of organic matrices. Successful digestion enables accurate characterization of MNPs using micro-spectroscopy. In this study, eight different enzymes or enzyme mixtures commonly used in digestion protocols were tested in four different buffers, to select the best combinations of enzymes and buffers for the preprocessing of human placental tissue for MNP (spectro-)microscopic analysis. Placenta tissue was spiked with fluorescent 200 nm, 500 nm, 1 μm, and 10 μm polystyrene MNPs to analyze morphological stability throughout the digestion and to determine recovery rates (RRs). For the optimal protocol, RRs of 98% ±6 (200 nm), 148% ±8 (500 nm), 147% ±8 (1 μm) and 81% ±8 (10 μm) were determined using confocal fluorescence microscopy (CFM). We explain values >100% by dye leaching and hypothesize that the leached dye can bind to organic residue from tissue with a similar size as the FPS particles, causing false positives when counting MNPs. Morphological changes were not observed for the final digestion protocol both with CFM and scanning electron microscopy. Hence, we demonstrate an optimized enzymatic digestion protocol to digest (placental) tissue and report on the accuracy of the characterization of model MNPs using micro-spectroscopy, which will enable further research with an emphasis on sub-micron (<1µm) sized plastic particles.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.