Sang M Lee, Yehui Sun, Sumanta Chatterjee, Hu Xiong, Qiang Cheng, Xu Wang, Daniel J Siegwart
{"title":"Structure-Activity Relationship of Ionizable Lipids for siRNA and mRNA Lipid Nanoparticle Design.","authors":"Sang M Lee, Yehui Sun, Sumanta Chatterjee, Hu Xiong, Qiang Cheng, Xu Wang, Daniel J Siegwart","doi":"10.1021/acsbiomaterials.5c00463","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) represent the most effective vehicle class identified to date for delivering RNA. A stronger understanding of the structure-activity relationships that govern successful mRNA delivery would enable the development of improved LNPs. Herein, ionizable lipids with high mRNA <i>in vitro</i> delivery efficacy among 465 lipids were selected to be evaluated for their <i>in vivo</i> activity and structure-activity relationship. Variations of these ionizable amino hydroxy and amino lipid families were synthesized, and 42 lipids were evaluated to study how chemical alterations of the carbon chain within the core influence LNP potency. To further understand the relationship between chemical structure and <i>in vivo</i> hepatic delivery potency, physicochemical properties including size, PDI, p<i>K</i><sub>a</sub>, and buffering capacity were measured. Our evaluations revealed that both the p<i>K</i><sub>a</sub> and buffering capacity may be valuable in predicting <i>in vivo</i> hepatic delivery based on lipid structures, expanding the range of acceptable LNP p<i>K</i><sub>a</sub> to 6.2-7.4, and showed that the buffering capacity may help predict formulations for successful hepatic delivery of mRNA-LNPs. This study reiterates the importance of the chemical structure of the ionizable amino lipid for LNPs and highlights the intricacies of its relationship with the physical properties of LNPs. We anticipate that understanding the structure-activity relationship of ionizable lipids will be valuable for the continued rational design of ionizable amino lipids for the LNP delivery of small and large RNA cargoes.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00463","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) represent the most effective vehicle class identified to date for delivering RNA. A stronger understanding of the structure-activity relationships that govern successful mRNA delivery would enable the development of improved LNPs. Herein, ionizable lipids with high mRNA in vitro delivery efficacy among 465 lipids were selected to be evaluated for their in vivo activity and structure-activity relationship. Variations of these ionizable amino hydroxy and amino lipid families were synthesized, and 42 lipids were evaluated to study how chemical alterations of the carbon chain within the core influence LNP potency. To further understand the relationship between chemical structure and in vivo hepatic delivery potency, physicochemical properties including size, PDI, pKa, and buffering capacity were measured. Our evaluations revealed that both the pKa and buffering capacity may be valuable in predicting in vivo hepatic delivery based on lipid structures, expanding the range of acceptable LNP pKa to 6.2-7.4, and showed that the buffering capacity may help predict formulations for successful hepatic delivery of mRNA-LNPs. This study reiterates the importance of the chemical structure of the ionizable amino lipid for LNPs and highlights the intricacies of its relationship with the physical properties of LNPs. We anticipate that understanding the structure-activity relationship of ionizable lipids will be valuable for the continued rational design of ionizable amino lipids for the LNP delivery of small and large RNA cargoes.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture