Modeling bioconvective mixed convection of non-newtonian nanofluids using finite difference approach: A Jeffrey fluid model

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
M. Ijaz Khan
{"title":"Modeling bioconvective mixed convection of non-newtonian nanofluids using finite difference approach: A Jeffrey fluid model","authors":"M. Ijaz Khan","doi":"10.1016/j.triboint.2025.110979","DOIUrl":null,"url":null,"abstract":"<div><div>The bioconvective mixed convection flow has engineered significant applications in various industrial processes, biotechnology systems and biomedical engineering. The objective of current analysis is to analyze a two-dimensional bioconvective flow of non-Newtonian nanofluid in presence of mixed convection effects. The flow is subject to stretched cylinder. The Jeffrey fluid model is retained in order to evaluate the rheological aspects of non-Newtonian material. The motivated bioconvective problem addresses the heat and mass transfer impact in complex systems. The numerical simulations are performed with implementation of finite difference method (FDM). Physical aspects behind variation of parameters are graphically intended. It has been predicted that fluid velocity enhances due to Grashof number and buoyancy ratio parameter. The microorganisms profile declined due to higher Peclet number. The findings are particularly relevant to the design of nanofluidic heat exchangers, bio-convective cooling technologies, microbial fuel systems, and MHD-based polymer processing devices.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"212 ","pages":"Article 110979"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25004748","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bioconvective mixed convection flow has engineered significant applications in various industrial processes, biotechnology systems and biomedical engineering. The objective of current analysis is to analyze a two-dimensional bioconvective flow of non-Newtonian nanofluid in presence of mixed convection effects. The flow is subject to stretched cylinder. The Jeffrey fluid model is retained in order to evaluate the rheological aspects of non-Newtonian material. The motivated bioconvective problem addresses the heat and mass transfer impact in complex systems. The numerical simulations are performed with implementation of finite difference method (FDM). Physical aspects behind variation of parameters are graphically intended. It has been predicted that fluid velocity enhances due to Grashof number and buoyancy ratio parameter. The microorganisms profile declined due to higher Peclet number. The findings are particularly relevant to the design of nanofluidic heat exchangers, bio-convective cooling technologies, microbial fuel systems, and MHD-based polymer processing devices.
用有限差分法模拟非牛顿纳米流体的生物对流混合对流:杰弗里流体模型
生物对流混合对流在各种工业过程、生物技术系统和生物医学工程中有着重要的应用。当前分析的目的是分析存在混合对流效应的非牛顿纳米流体的二维生物对流流动。流动受到拉伸气缸的影响。为了评价非牛顿材料的流变学方面,保留了杰弗里流体模型。激发生物对流问题解决了复杂系统中的传热传质影响。采用有限差分法(FDM)进行了数值模拟。参数变化背后的物理方面用图形表示。预测了格拉什夫数和浮力比参数对流体速度的影响。Peclet数越高,微生物分布越差。这些发现与纳米流体热交换器、生物对流冷却技术、微生物燃料系统和基于mhd的聚合物加工装置的设计特别相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信