Yanjuan Zhu , Fei Fang , Bo Peng , Wenping Xu , Xuhong Qian , Yang Zhang , Jiagao Cheng
{"title":"Exposure to chiral pydiflumetofen induces cardiovascular toxicity in early stages of zebrafish","authors":"Yanjuan Zhu , Fei Fang , Bo Peng , Wenping Xu , Xuhong Qian , Yang Zhang , Jiagao Cheng","doi":"10.1016/j.envpol.2025.126819","DOIUrl":null,"url":null,"abstract":"<div><div>Pesticides increase agricultural productivity, but with the widespread use of pesticides, concerns have arisen about their potential negative impacts on human health and aquatic organisms. Pydiflumetofen (PYD) is a novel chiral fungicide, and the potential environmental and health hazards of PYD and its chiral isomers are not sufficiently understood. In this work, zebrafish were employed as a model organism to study the toxicity of PYD, specifically investigating the developmental and cardiovascular toxicities in zebrafish exposed to 0.2 μg/mL of PYD for 72 h. The results showed that PYD severely impeded the development of zebrafish embryos, resulting in abnormal hatching rates, enlarged yolk sacs and shortened body length. In addition, PYD resulted in morphological and functional abnormalities of the embryonic heart and blood vessels, such as pericardial edema, linearization of the heart, impeded vascular production, slowed heart rate, and reduced erythrocyte flow rate. Mechanistically, we found that PYD caused oxidative stress, lipid accumulation and apoptosis in zebrafish. Simultaneously, the expression of genes associated with cardiac (<em>nkx2.5</em>, <em>gata4</em>, <em>tbx5</em>, <em>hand2</em>, <em>has2</em>) and vascular (<em>vegfc</em>, <em>dll4</em>, <em>cdh5</em>, <em>hey2</em>, and <em>notch3</em>) development was altered. Notably, our results indicate that (+)-<em>R</em>-PYD exhibits higher developmental and cardiovascular toxicity than (−)-<em>S</em>-PYD. This paper first reveals the cardiovascular toxicity of PYD and opens new avenues for assessing the environmental and health hazards caused by chiral fungicides.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"383 ","pages":"Article 126819"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125011923","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticides increase agricultural productivity, but with the widespread use of pesticides, concerns have arisen about their potential negative impacts on human health and aquatic organisms. Pydiflumetofen (PYD) is a novel chiral fungicide, and the potential environmental and health hazards of PYD and its chiral isomers are not sufficiently understood. In this work, zebrafish were employed as a model organism to study the toxicity of PYD, specifically investigating the developmental and cardiovascular toxicities in zebrafish exposed to 0.2 μg/mL of PYD for 72 h. The results showed that PYD severely impeded the development of zebrafish embryos, resulting in abnormal hatching rates, enlarged yolk sacs and shortened body length. In addition, PYD resulted in morphological and functional abnormalities of the embryonic heart and blood vessels, such as pericardial edema, linearization of the heart, impeded vascular production, slowed heart rate, and reduced erythrocyte flow rate. Mechanistically, we found that PYD caused oxidative stress, lipid accumulation and apoptosis in zebrafish. Simultaneously, the expression of genes associated with cardiac (nkx2.5, gata4, tbx5, hand2, has2) and vascular (vegfc, dll4, cdh5, hey2, and notch3) development was altered. Notably, our results indicate that (+)-R-PYD exhibits higher developmental and cardiovascular toxicity than (−)-S-PYD. This paper first reveals the cardiovascular toxicity of PYD and opens new avenues for assessing the environmental and health hazards caused by chiral fungicides.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.