CO2 hydrogenation to HCOOH catalyzed by aqueous Pd needle assembly

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengjun Wang, Jun Jia, Jing Xia, Chun-Kuo Peng, Jinxin He, Yueming Qiu, Yuting He, Le Gao, Fei Xue, Yan-Gu Lin, Guowu Zhan, Yuzheng Guo, Xiaoqing Huang, Yong Xu
{"title":"CO2 hydrogenation to HCOOH catalyzed by aqueous Pd needle assembly","authors":"Mengjun Wang, Jun Jia, Jing Xia, Chun-Kuo Peng, Jinxin He, Yueming Qiu, Yuting He, Le Gao, Fei Xue, Yan-Gu Lin, Guowu Zhan, Yuzheng Guo, Xiaoqing Huang, Yong Xu","doi":"10.1038/s41467-025-61747-5","DOIUrl":null,"url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) conversion to liquid fuels has attracted great attention due to the current environmental concerns and energy crisis. However, the selective conversion of CO<sub>2</sub> to target liquids is formidably challenging due to the chemical inertness of CO<sub>2</sub>. We theoretically and experimentally confirm that the bending of Pd−Pd bond can breaks the asymmetric potential well and facilitate CO<sub>2</sub> adsorption. We have successfully synthesized a new class of Pd nanoneedles via a “close edges and open corners” process, with a magic angle of 60<sup>o</sup> between the main trunk and branch, and realized the selective CO<sub>2</sub> hydrogenation to formic acid (HCOOH) at room temperature in water. Impressively, a HCOOH productivity of ~250 mmol g<sup>−1</sup> in 100 h while maintaining HCOOH selectivity over 99%. This work bridges nanostructure design and catalytic application, which may open a new avenue for selective CO<sub>2</sub> conversion in an elegant manner.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61747-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) conversion to liquid fuels has attracted great attention due to the current environmental concerns and energy crisis. However, the selective conversion of CO2 to target liquids is formidably challenging due to the chemical inertness of CO2. We theoretically and experimentally confirm that the bending of Pd−Pd bond can breaks the asymmetric potential well and facilitate CO2 adsorption. We have successfully synthesized a new class of Pd nanoneedles via a “close edges and open corners” process, with a magic angle of 60o between the main trunk and branch, and realized the selective CO2 hydrogenation to formic acid (HCOOH) at room temperature in water. Impressively, a HCOOH productivity of ~250 mmol g−1 in 100 h while maintaining HCOOH selectivity over 99%. This work bridges nanostructure design and catalytic application, which may open a new avenue for selective CO2 conversion in an elegant manner.

Abstract Image

水相钯针组件催化CO2加氢制氢氧根
由于当前的环境问题和能源危机,二氧化碳转化为液体燃料引起了人们的广泛关注。然而,由于二氧化碳的化学惰性,将二氧化碳选择性转化为目标液体是非常具有挑战性的。理论和实验证实,Pd - Pd键的弯曲可以很好地打破不对称电位,促进CO2的吸附。我们成功地通过“边闭角开”的工艺合成了一类新型的钯纳米针,主枝之间的神角为600°,并在室温下在水中实现了CO2选择性加氢成甲酸(HCOOH)。令人印象深刻的是,HCOOH在100 h内的产率为~250 mmol g−1,同时保持了99%以上的HCOOH选择性。这项工作将纳米结构设计与催化应用相结合,为选择性二氧化碳转化开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信