Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Abed Alrahman Chouaib, Hsin-Fang Chang, Omnia M. Khamis, Nadia Alawar, Santiago Echeverry, Lucie Demeersseman, Sofia Elizarova, James A. Daniel, Qinghai Tian, Peter Lipp, Eugenio F. Fornasiero, Salvatore Valitutti, Sebastian Barg, Constantin Pape, Ali H. Shaib, Ute Becherer
{"title":"Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis","authors":"Abed Alrahman Chouaib, Hsin-Fang Chang, Omnia M. Khamis, Nadia Alawar, Santiago Echeverry, Lucie Demeersseman, Sofia Elizarova, James A. Daniel, Qinghai Tian, Peter Lipp, Eugenio F. Fornasiero, Salvatore Valitutti, Sebastian Barg, Constantin Pape, Ali H. Shaib, Ute Becherer","doi":"10.1038/s41467-025-61579-3","DOIUrl":null,"url":null,"abstract":"<p>Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61579-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.

Abstract Image

高度适应性的深度学习平台,用于囊泡胞吐的自动检测和分析
活细胞成像中的活动识别是劳动密集型的,需要大量的人力。现有的自动化分析工具的通用性很大程度上受到限制。我们提出了智能囊泡胞吐分析(IVEA)平台,这是一个ImageJ插件,用于自动,可靠地分析荧光标记的囊泡融合事件和其他爆发样活动。IVEA包括三个专门用于检测的模块:(1)神经元突触传递,(2)任何细胞类型的单囊胞吐,(3)纳米传感器检测的胞吐。每个模块都使用不同的技术,包括深度学习,可以以比人工分析快60倍的速度检测人类经常错过的罕见事件。IVEA的多功能性可以通过集成接口进行改进或培训新模型来扩展。凭借其令人印象深刻的速度和卓越的准确性,IVEA代表了胞吐图像分析和其他爆发样荧光波动的开创性进步,适用于广泛的显微镜类型和荧光染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信