Abed Alrahman Chouaib, Hsin-Fang Chang, Omnia M. Khamis, Nadia Alawar, Santiago Echeverry, Lucie Demeersseman, Sofia Elizarova, James A. Daniel, Qinghai Tian, Peter Lipp, Eugenio F. Fornasiero, Salvatore Valitutti, Sebastian Barg, Constantin Pape, Ali H. Shaib, Ute Becherer
{"title":"Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis","authors":"Abed Alrahman Chouaib, Hsin-Fang Chang, Omnia M. Khamis, Nadia Alawar, Santiago Echeverry, Lucie Demeersseman, Sofia Elizarova, James A. Daniel, Qinghai Tian, Peter Lipp, Eugenio F. Fornasiero, Salvatore Valitutti, Sebastian Barg, Constantin Pape, Ali H. Shaib, Ute Becherer","doi":"10.1038/s41467-025-61579-3","DOIUrl":null,"url":null,"abstract":"<p>Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61579-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA’s versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.