Decoding viscosity-microstructure relationships in the ternary CaO-SiO2-FexO system via integrated machine learning and multimodal characterization

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Longxing Zhang, Jinglin You, Guopeng Liu, Xiang Xia, Yufan Zhao, Feiyan Xu, Meiqin Sheng, Jiawen Lu, Yong Liu, Qingli Zhang, Songming Wan, Liming Lu, Kai Tang
{"title":"Decoding viscosity-microstructure relationships in the ternary CaO-SiO2-FexO system via integrated machine learning and multimodal characterization","authors":"Longxing Zhang, Jinglin You, Guopeng Liu, Xiang Xia, Yufan Zhao, Feiyan Xu, Meiqin Sheng, Jiawen Lu, Yong Liu, Qingli Zhang, Songming Wan, Liming Lu, Kai Tang","doi":"10.1016/j.jmst.2025.05.069","DOIUrl":null,"url":null,"abstract":"This study investigates the viscosity and microstructure of the ternary CaO-SiO<sub>2</sub>-Fe<em><sub>x</sub></em>O system using a combination of deep neural network (DNN) learning, in-situ Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and quantum chemical ab initio calculation. A DNN-based viscosity prediction model was developed using a dataset of 1483 experimental data points, which were partitioned into training, validation, and test sets at a 5:2:3 ratio for model training and evaluation. The model achieved high prediction accuracy with a coefficient of determination (<em>R<sup>2</sup></em>) of 0.9464 and a mean absolute error (MAE) of 0.069. The dataset encompasses the key compositional range of metallurgical slags, spanning 0–70 mol% SiO<sub>2</sub>, 0–70 mol% CaO, and 0–90 mol% Fe<em><sub>x</sub></em>O. The model enables rapid and accurate viscosity predictions, reducing the need for extensive experimental measurements. Microstructure analysis via XPS and Raman spectroscopy revealed that with increasing iron content, the silicon-oxygen tetrahedron (SiOT) network structure is disrupted, leading to a transformation from Si–O–Si to Si–O–Fe and Fe–O–Fe bonds, accompanied by a decrease in viscosity. This study also quantitatively correlates the Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Si<sup>4+</sup>) ratio in tetrahedral coordination with melt viscosity through structure descriptors (NBO/Si ratio). These results demonstrate that an increase in the tetrahedral Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Si<sup>4+</sup>) ratio nonlinearly elevates NBO/Si values (correlation coefficient <em>r</em> = 0.99), which linearly reduces melt viscosity (<em>r</em> = 0.96) through depolymerization of the SiOT network. The established model provides a predictive framework for viscosity optimization in metallurgical slag design and quantitative analysis of magma transport dynamics in geological systems.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"191 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.05.069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the viscosity and microstructure of the ternary CaO-SiO2-FexO system using a combination of deep neural network (DNN) learning, in-situ Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and quantum chemical ab initio calculation. A DNN-based viscosity prediction model was developed using a dataset of 1483 experimental data points, which were partitioned into training, validation, and test sets at a 5:2:3 ratio for model training and evaluation. The model achieved high prediction accuracy with a coefficient of determination (R2) of 0.9464 and a mean absolute error (MAE) of 0.069. The dataset encompasses the key compositional range of metallurgical slags, spanning 0–70 mol% SiO2, 0–70 mol% CaO, and 0–90 mol% FexO. The model enables rapid and accurate viscosity predictions, reducing the need for extensive experimental measurements. Microstructure analysis via XPS and Raman spectroscopy revealed that with increasing iron content, the silicon-oxygen tetrahedron (SiOT) network structure is disrupted, leading to a transformation from Si–O–Si to Si–O–Fe and Fe–O–Fe bonds, accompanied by a decrease in viscosity. This study also quantitatively correlates the Fe3+/(Fe3++Si4+) ratio in tetrahedral coordination with melt viscosity through structure descriptors (NBO/Si ratio). These results demonstrate that an increase in the tetrahedral Fe3+/(Fe3++Si4+) ratio nonlinearly elevates NBO/Si values (correlation coefficient r = 0.99), which linearly reduces melt viscosity (r = 0.96) through depolymerization of the SiOT network. The established model provides a predictive framework for viscosity optimization in metallurgical slag design and quantitative analysis of magma transport dynamics in geological systems.

Abstract Image

通过集成机器学习和多模态表征解码三元CaO-SiO2-FexO体系中的粘度-微观结构关系
本研究采用深度神经网络(DNN)学习、原位拉曼光谱、x射线光电子能谱(XPS)和量子化学从头计算相结合的方法研究了三元CaO-SiO2-FexO体系的粘度和微观结构。利用1483个数据点的实验数据集,建立了基于dnn的粘度预测模型,并以5:2:3的比例划分为训练集、验证集和测试集,用于模型训练和评估。模型预测精度较高,决定系数(R2)为0.9464,平均绝对误差(MAE)为0.069。该数据集涵盖了冶金渣的关键成分范围,包括0-70 mol% SiO2, 0-70 mol% CaO和0-90 mol% FexO。该模型能够快速准确地预测粘度,减少了大量实验测量的需要。通过XPS和拉曼光谱分析发现,随着铁含量的增加,硅氧四面体(SiOT)网络结构被破坏,导致Si-O-Si键转变为Si-O-Fe键和Fe-O-Fe键,并伴随着粘度的降低。本研究还通过结构描述符(NBO/Si比)定量地将四面体配位中Fe3+/(Fe3++Si4+)比与熔体粘度联系起来。结果表明,四面体Fe3+/(Fe3++Si4+)比的增加非线性地提高了NBO/Si值(相关系数r = 0.99),通过SiOT网络的解聚,线性地降低了熔体粘度(r = 0.96)。该模型为冶金渣设计中的粘度优化和地质系统中岩浆运移动力学的定量分析提供了预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信