Bimetallic co-growth of In2O3/Co3O4 porous nanorods for rapid detection of acetone gas

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tao Wang , Nan Yang , Changyu Duan , Longyun Li , Yuetong Cao , Ke Wang , Zhongqi Zhu , Genlin Zhang , Yumin Zhang , Qingju Liu , Jin Zhang
{"title":"Bimetallic co-growth of In2O3/Co3O4 porous nanorods for rapid detection of acetone gas","authors":"Tao Wang ,&nbsp;Nan Yang ,&nbsp;Changyu Duan ,&nbsp;Longyun Li ,&nbsp;Yuetong Cao ,&nbsp;Ke Wang ,&nbsp;Zhongqi Zhu ,&nbsp;Genlin Zhang ,&nbsp;Yumin Zhang ,&nbsp;Qingju Liu ,&nbsp;Jin Zhang","doi":"10.1016/j.apsusc.2025.163972","DOIUrl":null,"url":null,"abstract":"<div><div>Acetone, a critical biomarker in exhaled breath for the diagnosis of diabetes, necessitates the development of high-performance gas sensors for real-time monitoring. In this work, bimetallic In<sub>2</sub>O<sub>3</sub>/Co<sub>3</sub>O<sub>4</sub> porous nanorods with tunable In/Co molar ratios were synthesized via a hydrothermal approach. The optimized sensor 3-ICO (In:Co = 3:10, molar ratio), exhibited remarkable acetone-sensing performance with a high response of 125.6–10 ppm acetone at 250 °C, ultrafast response/recovery times (45 s/19 s), outstanding selectivity, and long-term stability. The integration of materials characterization with density functional theory (DFT) simulations demonstrated that the p-n heterojunction formed between Co<sub>3</sub>O<sub>4</sub> and In<sub>2</sub>O<sub>3</sub> facilitates interfacial charge transfer, enhancing both the oxygen vacancy concentration and specific surface area. These synergistic effects significantly improve acetone adsorption energy and electron transport efficiency. This work highlights the pivotal role of heterojunction engineering in optimizing the detection performance of metal-oxide semiconductors for low-concentration volatile organic compounds (VOCs), offering promising applications in non-invasive diabetes diagnosis.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"711 ","pages":"Article 163972"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016873","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acetone, a critical biomarker in exhaled breath for the diagnosis of diabetes, necessitates the development of high-performance gas sensors for real-time monitoring. In this work, bimetallic In2O3/Co3O4 porous nanorods with tunable In/Co molar ratios were synthesized via a hydrothermal approach. The optimized sensor 3-ICO (In:Co = 3:10, molar ratio), exhibited remarkable acetone-sensing performance with a high response of 125.6–10 ppm acetone at 250 °C, ultrafast response/recovery times (45 s/19 s), outstanding selectivity, and long-term stability. The integration of materials characterization with density functional theory (DFT) simulations demonstrated that the p-n heterojunction formed between Co3O4 and In2O3 facilitates interfacial charge transfer, enhancing both the oxygen vacancy concentration and specific surface area. These synergistic effects significantly improve acetone adsorption energy and electron transport efficiency. This work highlights the pivotal role of heterojunction engineering in optimizing the detection performance of metal-oxide semiconductors for low-concentration volatile organic compounds (VOCs), offering promising applications in non-invasive diabetes diagnosis.

Abstract Image

Abstract Image

双金属共生长In2O3/Co3O4多孔纳米棒用于丙酮气体的快速检测
丙酮是诊断糖尿病的关键生物标志物,因此需要开发高性能的气体传感器进行实时监测。本文采用水热法合成了In/Co摩尔比可调的双金属In2O3/Co3O4多孔纳米棒。优化后的传感器3-ICO (In:Co = 3:10,摩尔比)在250 °C下具有125.6 ~ 10 ppm丙酮的高响应性能,超快的响应/恢复时间(45 s/19 s),出色的选择性和长期稳定性。材料表征与密度泛函理论(DFT)模拟的结合表明,Co3O4和In2O3之间形成的p-n异质结促进了界面电荷转移,提高了氧空位浓度和比表面积。这些协同效应显著提高了丙酮的吸附能和电子传递效率。这项工作强调了异质结工程在优化金属氧化物半导体对低浓度挥发性有机化合物(VOCs)的检测性能方面的关键作用,为非侵入性糖尿病诊断提供了有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信