Christian A Boehm, Mahmoud Sesa, Vytautas Kucikas, Marc van Zandvoort, Kevin Linka, Stefanie Reese, Stefan Jockenhoevel
{"title":"<i>In Vitro</i> Model Extracellular Matrix Maturation Under Variable Stress Conditions.","authors":"Christian A Boehm, Mahmoud Sesa, Vytautas Kucikas, Marc van Zandvoort, Kevin Linka, Stefanie Reese, Stefan Jockenhoevel","doi":"10.1177/19373341251359109","DOIUrl":null,"url":null,"abstract":"<p><p>The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an <i>in silico</i> growth model to complement <i>in vitro</i> findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an <i>in silico</i> growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The <i>in silico</i> model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined <i>in vitro</i> and <i>in silico</i> approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251359109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an in silico growth model to complement in vitro findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an in silico growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The in silico model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined in vitro and in silico approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.