PhytoCluster: a generative deep learning model for clustering plant single-cell RNA-seq data.

IF 5 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
aBIOTECH Pub Date : 2025-02-20 eCollection Date: 2025-06-01 DOI:10.1007/s42994-025-00196-6
Hao Wang, Xiangzheng Fu, Lijia Liu, Yi Wang, Jingpeng Hong, Bintao Pan, Yaning Cao, Yanqing Chen, Yongsheng Cao, Xiaoding Ma, Wei Fang, Shen Yan
{"title":"PhytoCluster: a generative deep learning model for clustering plant single-cell RNA-seq data.","authors":"Hao Wang, Xiangzheng Fu, Lijia Liu, Yi Wang, Jingpeng Hong, Bintao Pan, Yaning Cao, Yanqing Chen, Yongsheng Cao, Xiaoding Ma, Wei Fang, Shen Yan","doi":"10.1007/s42994-025-00196-6","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) technology enables a deep understanding of cellular differentiation during plant development and reveals heterogeneity among the cells of a given tissue. However, the computational characterization of such cellular heterogeneity is complicated by the high dimensionality, sparsity, and biological noise inherent to the raw data. Here, we introduce PhytoCluster, an unsupervised deep learning algorithm, to cluster scRNA-seq data by extracting latent features. We benchmarked PhytoCluster against four simulated datasets and five real scRNA-seq datasets with varying protocols and data quality levels. A comprehensive evaluation indicated that PhytoCluster outperforms other methods in clustering accuracy, noise removal, and signal retention. Additionally, we evaluated the performance of the latent features extracted by PhytoCluster across four machine learning models. The computational results highlight the ability of PhytoCluster to extract meaningful information from plant scRNA-seq data, with machine learning models achieving accuracy comparable to that of raw features. We believe that PhytoCluster will be a valuable tool for disentangling complex cellular heterogeneity based on scRNA-seq data.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42994-025-00196-6.</p>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 2","pages":"189-201"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1007/s42994-025-00196-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) technology enables a deep understanding of cellular differentiation during plant development and reveals heterogeneity among the cells of a given tissue. However, the computational characterization of such cellular heterogeneity is complicated by the high dimensionality, sparsity, and biological noise inherent to the raw data. Here, we introduce PhytoCluster, an unsupervised deep learning algorithm, to cluster scRNA-seq data by extracting latent features. We benchmarked PhytoCluster against four simulated datasets and five real scRNA-seq datasets with varying protocols and data quality levels. A comprehensive evaluation indicated that PhytoCluster outperforms other methods in clustering accuracy, noise removal, and signal retention. Additionally, we evaluated the performance of the latent features extracted by PhytoCluster across four machine learning models. The computational results highlight the ability of PhytoCluster to extract meaningful information from plant scRNA-seq data, with machine learning models achieving accuracy comparable to that of raw features. We believe that PhytoCluster will be a valuable tool for disentangling complex cellular heterogeneity based on scRNA-seq data.

Supplementary information: The online version contains supplementary material available at 10.1007/s42994-025-00196-6.

PhytoCluster:一个用于植物单细胞RNA-seq数据聚类的生成式深度学习模型。
单细胞RNA测序(scRNA-seq)技术能够深入了解植物发育过程中的细胞分化,揭示给定组织中细胞之间的异质性。然而,这种细胞异质性的计算表征由于原始数据固有的高维性、稀疏性和生物噪声而变得复杂。本文引入一种无监督深度学习算法PhytoCluster,通过提取潜在特征对scRNA-seq数据进行聚类。我们对四个模拟数据集和五个真实的scRNA-seq数据集进行了基准测试,这些数据集具有不同的协议和数据质量水平。综合评价表明,PhytoCluster在聚类精度、噪声去除和信号保留方面优于其他方法。此外,我们评估了PhytoCluster在四种机器学习模型中提取的潜在特征的性能。计算结果突出了PhytoCluster从植物scRNA-seq数据中提取有意义信息的能力,其机器学习模型的准确性可与原始特征相媲美。我们相信PhytoCluster将成为基于scRNA-seq数据解开复杂细胞异质性的有价值的工具。补充资料:在线版本包含补充资料,网址为10.1007/s42994-025-00196-6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
2.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信