{"title":"Breeding and molecular characterization of a new salt-tolerant wheat variety.","authors":"Wanqing Bai, Ziyi Yang, Shuxian Huang, Anqi Li, Liming Wang, Yunwei Zhang, Jiaqiang Sun","doi":"10.1007/s42994-025-00211-w","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinization is a severely detrimental environmental problem that affects the seed germination, growth and yield of wheat. To excavate salt-tolerant genes and breed salt-tolerant wheat varieties are of great significance for ensuring global food security. In this study, we have successfully developed a novel salt-tolerant wheat cultivar, KD808, which is shown to have remarkable salt tolerance through multiple phenotypic analyses. RNA-seq coupled with RT-qPCR analyses reveal that the expression of <i>TaSGR-5B</i> is up-regulated by salt stress treatment in the salt-sensitive wheat varieties such as KN199 and Fielder, whereas the salt-induction of <i>TaSGR-5B</i> is abolished in our salt-tolerant variety KD808. More importantly, we found that the loss-of-function <i>Tasgr-aabbdd</i> mutants exhibit significantly salt-tolerant phenotypes without penalties in major agronomic traits. This study not only provides valuable insights into the molecular mechanisms of salt tolerance in wheat but also offers substantial potential for improving wheat cultivation in saline-alkali soils, thereby contributing to sustainable agricultural production.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42994-025-00211-w.</p>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 2","pages":"278-283"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1007/s42994-025-00211-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinization is a severely detrimental environmental problem that affects the seed germination, growth and yield of wheat. To excavate salt-tolerant genes and breed salt-tolerant wheat varieties are of great significance for ensuring global food security. In this study, we have successfully developed a novel salt-tolerant wheat cultivar, KD808, which is shown to have remarkable salt tolerance through multiple phenotypic analyses. RNA-seq coupled with RT-qPCR analyses reveal that the expression of TaSGR-5B is up-regulated by salt stress treatment in the salt-sensitive wheat varieties such as KN199 and Fielder, whereas the salt-induction of TaSGR-5B is abolished in our salt-tolerant variety KD808. More importantly, we found that the loss-of-function Tasgr-aabbdd mutants exhibit significantly salt-tolerant phenotypes without penalties in major agronomic traits. This study not only provides valuable insights into the molecular mechanisms of salt tolerance in wheat but also offers substantial potential for improving wheat cultivation in saline-alkali soils, thereby contributing to sustainable agricultural production.
Supplementary information: The online version contains supplementary material available at 10.1007/s42994-025-00211-w.