Samantha M Surber, Chen Hsieh, Lan Na, Scott A Harding, Chung-Jui Tsai
{"title":"An updated sulfate transporter phylogeny uncovers a perennial-specific subgroup associated with lignification.","authors":"Samantha M Surber, Chen Hsieh, Lan Na, Scott A Harding, Chung-Jui Tsai","doi":"10.1093/treephys/tpaf080","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfate-proton co-transporters (SULTRs) mediate sulfate uptake, transport, storage, and assimilation in plants. The SULTR family has historically been classified into four groups (SULTR1-SULTR4), with well-characterized roles for SULTR groups 1, 2, and 4. However, the functions of the large and diverse SULTR3 group remain poorly understood. Here, we present an updated phylogenetic analysis of SULTRs across angiosperms, including multiple early-divergent lineages. Our results suggest that the enigmatic SULTR3 group comprises four distinct subfamilies that predate the emergence of angiosperms, providing a basis for reclassifying the SULTR family into seven subfamilies. This expanded classification is supported by subfamily-specific gene structures and amino acid substitutions in the substrate-binding pocket. Structural modeling identified three serine residues uniquely lining the substrate-binding pocket of SULTR3.4, enabling three hydrogen bonds with the phosphate ion. The data support the proposed neofunctionalization of this subfamily for phosphate allocation within vascular tissues. Transcriptome analysis of Populus tremula × alba revealed divergent tissue expression preferences among SULTR subfamilies and between genome duplicates. We observed partitioned expression in vascular tissues among the four SULTR3 subfamilies, with PtaSULTR3.4a and PtaSULTR3.2a preferentially expressed in primary and secondary xylem, respectively. Gene coexpression analysis revealed coordinated expression of PtaSULTR3.4a with genes involved in phosphate starvation responses and nutrient transport, consistent with a potential role in phosphate homeostasis. In contrast, PtaSULTR3.2a was strongly coexpressed with lignification and one-carbon metabolism genes and their upstream transcription regulators. PtaSULTR3.2a belongs to a eudicot-specific branch of the SULTR3.1 subfamily found only in perennial species, suggesting a specialized role in lignifying tissues. Together, our findings provide a refined phylogenetic framework for the SULTR family and suggest that the expanded SULTR3 subfamilies have undergone neofunctionalization during the evolution of vascular and perennial plants.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfate-proton co-transporters (SULTRs) mediate sulfate uptake, transport, storage, and assimilation in plants. The SULTR family has historically been classified into four groups (SULTR1-SULTR4), with well-characterized roles for SULTR groups 1, 2, and 4. However, the functions of the large and diverse SULTR3 group remain poorly understood. Here, we present an updated phylogenetic analysis of SULTRs across angiosperms, including multiple early-divergent lineages. Our results suggest that the enigmatic SULTR3 group comprises four distinct subfamilies that predate the emergence of angiosperms, providing a basis for reclassifying the SULTR family into seven subfamilies. This expanded classification is supported by subfamily-specific gene structures and amino acid substitutions in the substrate-binding pocket. Structural modeling identified three serine residues uniquely lining the substrate-binding pocket of SULTR3.4, enabling three hydrogen bonds with the phosphate ion. The data support the proposed neofunctionalization of this subfamily for phosphate allocation within vascular tissues. Transcriptome analysis of Populus tremula × alba revealed divergent tissue expression preferences among SULTR subfamilies and between genome duplicates. We observed partitioned expression in vascular tissues among the four SULTR3 subfamilies, with PtaSULTR3.4a and PtaSULTR3.2a preferentially expressed in primary and secondary xylem, respectively. Gene coexpression analysis revealed coordinated expression of PtaSULTR3.4a with genes involved in phosphate starvation responses and nutrient transport, consistent with a potential role in phosphate homeostasis. In contrast, PtaSULTR3.2a was strongly coexpressed with lignification and one-carbon metabolism genes and their upstream transcription regulators. PtaSULTR3.2a belongs to a eudicot-specific branch of the SULTR3.1 subfamily found only in perennial species, suggesting a specialized role in lignifying tissues. Together, our findings provide a refined phylogenetic framework for the SULTR family and suggest that the expanded SULTR3 subfamilies have undergone neofunctionalization during the evolution of vascular and perennial plants.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.