Yuan Ma, Yao Xiong, Jiayu Xu, Hui Xu, Zongheng Fu, Guang-Rong Zhao, Yi Wu, Ying-Jin Yuan
{"title":"Assembly and delivery of large DNA via chromosome elimination in yeast.","authors":"Yuan Ma, Yao Xiong, Jiayu Xu, Hui Xu, Zongheng Fu, Guang-Rong Zhao, Yi Wu, Ying-Jin Yuan","doi":"10.1038/s41596-025-01214-z","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulation of large-scale genetic information provides a powerful approach to deciphering and engineering complex biological functions. However, the manipulation of large DNA, such as assembly and delivery, remains complex and difficult. Here we describe the experimental design strategy and protocol for a chromosome elimination-mediated large DNA assembly and delivery method (HAnDy), which enables efficient Mb-scale DNA assembly and delivery in yeast conveniently. This protocol is divided into three parts: (1) CRISPR-Cas9-mediated elimination of chromosome, which includes design and integration of a synthetic single-guide RNA (sgRNA) site near the centromere, activation of chromosome elimination by mating, and verification of the chromosome elimination. It can be used to eliminate multiple chromosomes, achieving haploidization in yeast. (2) Haploidization-mediated DNA assembly, which includes the design and construction of initial assembly strains, DNA assembly by programmed haploidization and verification of the assembled clones. (3) Haploidization-mediated DNA delivery, which includes the design and construction of inducible haploidization strains, DNA delivery by programmed haploidization and verification of the delivered clones. Users can utilize this protocol entirely or selectively depending on their needs. With the use of this protocol, it takes 10 d to achieve chromosome elimination and 7-11 d to achieve a standard cycle of haploidization-mediated DNA assembly or delivery. This protocol provides an efficient approach that is useful for the elimination, assembly and delivery of large DNA in yeast, requiring basic molecular biology skills.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01214-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Manipulation of large-scale genetic information provides a powerful approach to deciphering and engineering complex biological functions. However, the manipulation of large DNA, such as assembly and delivery, remains complex and difficult. Here we describe the experimental design strategy and protocol for a chromosome elimination-mediated large DNA assembly and delivery method (HAnDy), which enables efficient Mb-scale DNA assembly and delivery in yeast conveniently. This protocol is divided into three parts: (1) CRISPR-Cas9-mediated elimination of chromosome, which includes design and integration of a synthetic single-guide RNA (sgRNA) site near the centromere, activation of chromosome elimination by mating, and verification of the chromosome elimination. It can be used to eliminate multiple chromosomes, achieving haploidization in yeast. (2) Haploidization-mediated DNA assembly, which includes the design and construction of initial assembly strains, DNA assembly by programmed haploidization and verification of the assembled clones. (3) Haploidization-mediated DNA delivery, which includes the design and construction of inducible haploidization strains, DNA delivery by programmed haploidization and verification of the delivered clones. Users can utilize this protocol entirely or selectively depending on their needs. With the use of this protocol, it takes 10 d to achieve chromosome elimination and 7-11 d to achieve a standard cycle of haploidization-mediated DNA assembly or delivery. This protocol provides an efficient approach that is useful for the elimination, assembly and delivery of large DNA in yeast, requiring basic molecular biology skills.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.