{"title":"Boosting breast cancer immunotherapy through targeted siRNA delivery and sequential chemotherapy.","authors":"Naghmeh Jabarimani, Ehsan Khabazian, Bahar Morshedi, Yousef Fatahi, Mina Hosseini, Farhad Jadidi Niaragh, Fatemeh Atyabi, Farid Dorkoosh","doi":"10.1080/1061186X.2025.2528921","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer continues to be a major public health challenge due to therapeutic resistance, rising incidence and financial burden. Although anti-programmed cell death-ligand 1 (PD-L1) immunotherapy has revolutionised cancer treatment, its efficacy as monotherapy remains limited. Combining chemotherapy with immunotherapy offers the potential to amplify therapeutic outcomes and reduce side effects. Paclitaxel can induce immunogenic cell death (ICD) and improve tumour response to anti-PD-L1 therapy, thereby improving immunotherapy effectiveness. Meanwhile, small interfering RNA (siRNA) therapy can selectively suppress PD-L1 expression on the cell membrane and in the cytoplasm, though efficient delivery remains a challenge. We developed nanoparticles composed of trimethyl chitosan (TMC) and hyaluronic acid (HA) for delivering PD-L1 siRNA. These spherical nanoparticles (∼190 nm) demonstrated favourable physicochemical properties, high siRNA encapsulation efficiency, robust serum stability, a non-toxic nature and effective internalisation by cancer cells. The sequential therapy of sub-therapeutic doses of paclitaxel with siRNA PD-L1 in a 4T1 Balb/c mouse model compared to each monotherapy led to a substantial boost to antitumor immunity, suppression of tumour growth and increased infiltration of effector CD8+ T-cells within the tumour microenvironment. This study presents a novel siRNA delivery system and therapeutic approach that enhances the efficacy of breast cancer immunotherapy.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2528921","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer continues to be a major public health challenge due to therapeutic resistance, rising incidence and financial burden. Although anti-programmed cell death-ligand 1 (PD-L1) immunotherapy has revolutionised cancer treatment, its efficacy as monotherapy remains limited. Combining chemotherapy with immunotherapy offers the potential to amplify therapeutic outcomes and reduce side effects. Paclitaxel can induce immunogenic cell death (ICD) and improve tumour response to anti-PD-L1 therapy, thereby improving immunotherapy effectiveness. Meanwhile, small interfering RNA (siRNA) therapy can selectively suppress PD-L1 expression on the cell membrane and in the cytoplasm, though efficient delivery remains a challenge. We developed nanoparticles composed of trimethyl chitosan (TMC) and hyaluronic acid (HA) for delivering PD-L1 siRNA. These spherical nanoparticles (∼190 nm) demonstrated favourable physicochemical properties, high siRNA encapsulation efficiency, robust serum stability, a non-toxic nature and effective internalisation by cancer cells. The sequential therapy of sub-therapeutic doses of paclitaxel with siRNA PD-L1 in a 4T1 Balb/c mouse model compared to each monotherapy led to a substantial boost to antitumor immunity, suppression of tumour growth and increased infiltration of effector CD8+ T-cells within the tumour microenvironment. This study presents a novel siRNA delivery system and therapeutic approach that enhances the efficacy of breast cancer immunotherapy.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.