Boosting breast cancer immunotherapy through targeted siRNA delivery and sequential chemotherapy.

IF 3.9 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Naghmeh Jabarimani, Ehsan Khabazian, Bahar Morshedi, Yousef Fatahi, Mina Hosseini, Farhad Jadidi Niaragh, Fatemeh Atyabi, Farid Dorkoosh
{"title":"Boosting breast cancer immunotherapy through targeted siRNA delivery and sequential chemotherapy.","authors":"Naghmeh Jabarimani, Ehsan Khabazian, Bahar Morshedi, Yousef Fatahi, Mina Hosseini, Farhad Jadidi Niaragh, Fatemeh Atyabi, Farid Dorkoosh","doi":"10.1080/1061186X.2025.2528921","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer continues to be a major public health challenge due to therapeutic resistance, rising incidence and financial burden. Although anti-programmed cell death-ligand 1 (PD-L1) immunotherapy has revolutionised cancer treatment, its efficacy as monotherapy remains limited. Combining chemotherapy with immunotherapy offers the potential to amplify therapeutic outcomes and reduce side effects. Paclitaxel can induce immunogenic cell death (ICD) and improve tumour response to anti-PD-L1 therapy, thereby improving immunotherapy effectiveness. Meanwhile, small interfering RNA (siRNA) therapy can selectively suppress PD-L1 expression on the cell membrane and in the cytoplasm, though efficient delivery remains a challenge. We developed nanoparticles composed of trimethyl chitosan (TMC) and hyaluronic acid (HA) for delivering PD-L1 siRNA. These spherical nanoparticles (∼190 nm) demonstrated favourable physicochemical properties, high siRNA encapsulation efficiency, robust serum stability, a non-toxic nature and effective internalisation by cancer cells. The sequential therapy of sub-therapeutic doses of paclitaxel with siRNA PD-L1 in a 4T1 Balb/c mouse model compared to each monotherapy led to a substantial boost to antitumor immunity, suppression of tumour growth and increased infiltration of effector CD8+ T-cells within the tumour microenvironment. This study presents a novel siRNA delivery system and therapeutic approach that enhances the efficacy of breast cancer immunotherapy.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2528921","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer continues to be a major public health challenge due to therapeutic resistance, rising incidence and financial burden. Although anti-programmed cell death-ligand 1 (PD-L1) immunotherapy has revolutionised cancer treatment, its efficacy as monotherapy remains limited. Combining chemotherapy with immunotherapy offers the potential to amplify therapeutic outcomes and reduce side effects. Paclitaxel can induce immunogenic cell death (ICD) and improve tumour response to anti-PD-L1 therapy, thereby improving immunotherapy effectiveness. Meanwhile, small interfering RNA (siRNA) therapy can selectively suppress PD-L1 expression on the cell membrane and in the cytoplasm, though efficient delivery remains a challenge. We developed nanoparticles composed of trimethyl chitosan (TMC) and hyaluronic acid (HA) for delivering PD-L1 siRNA. These spherical nanoparticles (∼190 nm) demonstrated favourable physicochemical properties, high siRNA encapsulation efficiency, robust serum stability, a non-toxic nature and effective internalisation by cancer cells. The sequential therapy of sub-therapeutic doses of paclitaxel with siRNA PD-L1 in a 4T1 Balb/c mouse model compared to each monotherapy led to a substantial boost to antitumor immunity, suppression of tumour growth and increased infiltration of effector CD8+ T-cells within the tumour microenvironment. This study presents a novel siRNA delivery system and therapeutic approach that enhances the efficacy of breast cancer immunotherapy.

通过靶向siRNA传递和序贯化疗促进乳腺癌免疫治疗。
由于治疗耐药性、发病率上升和经济负担,癌症仍然是一个主要的公共卫生挑战。尽管抗程序性细胞死亡配体1 (PD-L1)免疫疗法已经彻底改变了癌症治疗,但其作为单一疗法的疗效仍然有限。化疗与免疫治疗相结合,有可能扩大治疗效果,减少副作用。紫杉醇可诱导免疫原性细胞死亡(immunogenic cell death, ICD),提高肿瘤对抗pd - l1治疗的应答,从而提高免疫治疗效果。同时,小干扰RNA (small interfering RNA, siRNA)疗法可以选择性地抑制PD-L1在细胞膜和细胞质上的表达,但有效的递送仍然是一个挑战。我们开发了由三甲基壳聚糖(TMC)和透明质酸(HA)组成的纳米颗粒,用于递送PD-L1 siRNA。这些球形纳米颗粒(~ 190 nm)表现出良好的物理化学性质、高siRNA包封效率、强大的血清稳定性、无毒性质和有效的癌细胞内化。在4T1 Balb/c小鼠模型中,与每种单药治疗相比,亚治疗剂量紫杉醇与siRNA PD-L1的顺序治疗可显著增强抗肿瘤免疫,抑制肿瘤生长,并增加肿瘤微环境中效应CD8+ t细胞的浸润。本研究提出了一种新的siRNA传递系统和治疗方法,提高了乳腺癌免疫治疗的疗效。(图形抽象)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信