Oral sustained release expandable dosage forms: innovations, challenges, and future directions.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Phool Chandra, Sani Pratap Singh, Vaibhav Rastogi, Mayur Porwal, Neetu Sachan
{"title":"Oral sustained release expandable dosage forms: innovations, challenges, and future directions.","authors":"Phool Chandra, Sani Pratap Singh, Vaibhav Rastogi, Mayur Porwal, Neetu Sachan","doi":"10.1080/09205063.2025.2528935","DOIUrl":null,"url":null,"abstract":"<p><p>Oral sustained-release dosage forms have gained considerable attention for their ability to enhance therapeutic outcomes and improve patient compliance. Among these, expandable drug delivery systems represent a significant innovation, offering extended gastric retention and controlled drug release through size-based retention strategies. These systems expand in the stomach after administration, delaying gastric emptying and enabling prolonged drug action. This review presents a consolidated overview of key expandable mechanisms-such as swelling, unfolding, floating, and mucoadhesion-along with a detailed discussion on formulation strategies, polymeric materials, and <i>in vivo</i> behavior. Special emphasis is placed on recent advancements in smart polymers, 3D printing, and novel fabrication techniques. The review also explores clinical applications, manufacturing challenges, safety concerns, and future research directions. By integrating scientific, technical, and translational insights, this paper aims to highlight the potential of expandable dosage forms in advancing oral drug delivery technologies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-30"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2528935","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oral sustained-release dosage forms have gained considerable attention for their ability to enhance therapeutic outcomes and improve patient compliance. Among these, expandable drug delivery systems represent a significant innovation, offering extended gastric retention and controlled drug release through size-based retention strategies. These systems expand in the stomach after administration, delaying gastric emptying and enabling prolonged drug action. This review presents a consolidated overview of key expandable mechanisms-such as swelling, unfolding, floating, and mucoadhesion-along with a detailed discussion on formulation strategies, polymeric materials, and in vivo behavior. Special emphasis is placed on recent advancements in smart polymers, 3D printing, and novel fabrication techniques. The review also explores clinical applications, manufacturing challenges, safety concerns, and future research directions. By integrating scientific, technical, and translational insights, this paper aims to highlight the potential of expandable dosage forms in advancing oral drug delivery technologies.

口服缓释可扩展剂型:创新、挑战和未来方向。
口服缓释剂型因其增强治疗效果和提高患者依从性的能力而受到相当大的关注。其中,可扩展的药物输送系统代表了一项重大创新,通过基于尺寸的保留策略提供延长的胃保留和控制药物释放。这些系统在给药后在胃中扩张,延缓胃排空,延长药物作用时间。这篇综述综述了关键的可膨胀机制,如膨胀、展开、漂浮和黏附,并详细讨论了配方策略、聚合物材料和体内行为。特别强调的是智能聚合物,3D打印和新型制造技术的最新进展。综述还探讨了临床应用、制造挑战、安全问题和未来的研究方向。通过整合科学、技术和转化的见解,本文旨在强调可扩展剂型在推进口服给药技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信