Ezgi Zekiye Akturk, Muath Njjar, Melek Tunc Ata, Ahmet Kaya, Abdullah Akdogan, Canan Onac
{"title":"Nanostructured Ox-MWCNT-PPy-Au electrochemical sensor for ultralow detection of retrorsine and evaluation of its cytotoxic effects on liver cells.","authors":"Ezgi Zekiye Akturk, Muath Njjar, Melek Tunc Ata, Ahmet Kaya, Abdullah Akdogan, Canan Onac","doi":"10.1080/09205063.2025.2529535","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the development of a novel retrorsine (RTS)-imprinted sensor utilizing oxidized multi-walled carbon nanotubes (Ox-MWCNTs), polypyrrole (PPy), and gold nanoparticles (AuNPs), employing square wave voltammetry for the sensitive and selective detection of RTS which causes oxidative-stress and DNA damage. The fabricated Ox-MWCNT-PPy-AuNP sensor demonstrated a surface-area of (0.218 cm<sup>2</sup>) is 4.25 times larger than a bare glassy carbon electrode, with a low charge transfer resistance (10.9 Ω), enhancing electron transfer kinetics. The sensor showed excellent sensitivity in detecting retrorsine, with a limit of detection of 0.035 nM in synthetic matrices and -0.030 nM in HepaRG cell culture medium. Toxicity assays in HepaRG cells revealed dose-dependent oxidative-stress, with glutathione levels decreasing from 23.08 ± 0.21 µmol/10<sup>9</sup> to 21.21 ± 0.02 µmol/10<sup>9</sup> at 35 µM retrorsine. Concurrently, GSSG levels increased from 1.32 ± 0.26 µmol/10<sup>9</sup> to 2.22 ± 0.02 µmol/10<sup>9</sup>. DNA-damage assessed <i>via</i> comet assay, showed significant increases in tail-moment (2.53 µm) and tail-migration (16.13 µm). Oxidative DNA-damage, indicated by 8-OHdG levels, increased significantly from 0.29 ± 0.02 ng.mL<sup>-</sup> (control) to 0.47 ± 0.07 ng.mL<sup>-</sup> at 35 µM retrorsine. These findings demonstrate the sensor's effectiveness for retrorsine detection and its applicability in toxicological studies. The integration of nanomaterial engineering and molecular imprinting provides a highly sensitive, selective, and eco-friendly solution for monitoring toxic agents and assessing their biological impacts.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-31"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2529535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development of a novel retrorsine (RTS)-imprinted sensor utilizing oxidized multi-walled carbon nanotubes (Ox-MWCNTs), polypyrrole (PPy), and gold nanoparticles (AuNPs), employing square wave voltammetry for the sensitive and selective detection of RTS which causes oxidative-stress and DNA damage. The fabricated Ox-MWCNT-PPy-AuNP sensor demonstrated a surface-area of (0.218 cm2) is 4.25 times larger than a bare glassy carbon electrode, with a low charge transfer resistance (10.9 Ω), enhancing electron transfer kinetics. The sensor showed excellent sensitivity in detecting retrorsine, with a limit of detection of 0.035 nM in synthetic matrices and -0.030 nM in HepaRG cell culture medium. Toxicity assays in HepaRG cells revealed dose-dependent oxidative-stress, with glutathione levels decreasing from 23.08 ± 0.21 µmol/109 to 21.21 ± 0.02 µmol/109 at 35 µM retrorsine. Concurrently, GSSG levels increased from 1.32 ± 0.26 µmol/109 to 2.22 ± 0.02 µmol/109. DNA-damage assessed via comet assay, showed significant increases in tail-moment (2.53 µm) and tail-migration (16.13 µm). Oxidative DNA-damage, indicated by 8-OHdG levels, increased significantly from 0.29 ± 0.02 ng.mL- (control) to 0.47 ± 0.07 ng.mL- at 35 µM retrorsine. These findings demonstrate the sensor's effectiveness for retrorsine detection and its applicability in toxicological studies. The integration of nanomaterial engineering and molecular imprinting provides a highly sensitive, selective, and eco-friendly solution for monitoring toxic agents and assessing their biological impacts.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.