{"title":"MicroRNA‑21: A potential therapeutic target in lung cancer (Review).","authors":"Zhouqiang Li, Hualing Zhang, Zeshan Chen, Guanzhu Wu, Weixing Guo, Yun Li","doi":"10.3892/ijo.2025.5773","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, the role of microRNA‑21 (miRNA‑21) as an oncogene in lung cancer was investigated. Studies have shown that miRNA‑21 can promote the progression of lung cancer by targeting downstream target genes, and its expression can be modulated by transcription factors, DNA methylation or competitive endogenous RNA as an upstream regulator. This review highlights that miRNA‑21 can promote the progression of lung cancer through multiple signaling pathways, with a focus on the PI3K/AKT, MEK/ERK, TGF‑β/SMAD, Hippo, NF‑κB and STAT3 signaling pathways. Mechanistically, miRNA‑21 plays an important role in the progression of lung cancer by regulating multiple biological processes, such as proliferation, invasion, metastasis, apoptosis and angiogenesis in lung cancer cells. Higher expression of miRNA‑21 is associated with chemotherapy, radiotherapy and immune resistance in lung cancer. Targeting these molecular pathways may be a novel therapeutic strategy for treating lung cancer. Additionally, miRNA‑21 can serve as a biomarker for lung cancer diagnosis, prognosis and treatment response. This review also summarized the following: i) Current methods employed to inhibit the expression of miRNA‑21 in lung cancer, including CRISPR/Cas9 technology; ii) the application of natural anticancer agents, oligonucleotides, small molecules and miRNA sponges; and iii) the nano‑delivery systems developed for miRNA‑21 inhibitors. Finally, the advancements in research on miRNA mimics and inhibitors in clinical trials, which may promote the application of miRNA‑21 in clinical trials in lung cancer, were discussed. Given that lung cancer is a considerable public health challenge, these studies provide new ways of treating patients with lung cancer.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"67 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2025.5773","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this review, the role of microRNA‑21 (miRNA‑21) as an oncogene in lung cancer was investigated. Studies have shown that miRNA‑21 can promote the progression of lung cancer by targeting downstream target genes, and its expression can be modulated by transcription factors, DNA methylation or competitive endogenous RNA as an upstream regulator. This review highlights that miRNA‑21 can promote the progression of lung cancer through multiple signaling pathways, with a focus on the PI3K/AKT, MEK/ERK, TGF‑β/SMAD, Hippo, NF‑κB and STAT3 signaling pathways. Mechanistically, miRNA‑21 plays an important role in the progression of lung cancer by regulating multiple biological processes, such as proliferation, invasion, metastasis, apoptosis and angiogenesis in lung cancer cells. Higher expression of miRNA‑21 is associated with chemotherapy, radiotherapy and immune resistance in lung cancer. Targeting these molecular pathways may be a novel therapeutic strategy for treating lung cancer. Additionally, miRNA‑21 can serve as a biomarker for lung cancer diagnosis, prognosis and treatment response. This review also summarized the following: i) Current methods employed to inhibit the expression of miRNA‑21 in lung cancer, including CRISPR/Cas9 technology; ii) the application of natural anticancer agents, oligonucleotides, small molecules and miRNA sponges; and iii) the nano‑delivery systems developed for miRNA‑21 inhibitors. Finally, the advancements in research on miRNA mimics and inhibitors in clinical trials, which may promote the application of miRNA‑21 in clinical trials in lung cancer, were discussed. Given that lung cancer is a considerable public health challenge, these studies provide new ways of treating patients with lung cancer.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.